Cargando…
The Jacobi polynomials QCD analysis of the CCFR data for xF$_{3}$ and the Q$^{2}$-dependence of the Gross - Llewellyn Smith sum rule
We present the results of our QCD analysis of the recent CCFR data for the structure function $xF_3 (x,Q^2)$ of the deep-inelastic neutrino--nucleon scattering. The analysis is based on the Jacobi polynomials expansion of the structure functions. The concrete results for the parameter $\Lambda_{\ove...
Autores principales: | Kataev, A L, Sidorov, A V |
---|---|
Lenguaje: | eng |
Publicado: |
1994
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(94)90961-X http://cds.cern.ch/record/259470 |
Ejemplares similares
-
The Q$^{2}$-dependence of the Gross - Llewellyn Smith sum rule and of the parton distributions
por: Kataev, A L, et al.
Publicado: (1994) -
The Gross - Llewellyn Smith sum rule: theory vs. experiment
por: Kataev, A L, et al.
Publicado: (1994) -
The Gross - Llewellyn Smith sum rule
por: Scott, W G
Publicado: (1981) -
Next-to-next-to-leading order QCD analysis of the Gross-Llewellyn Smith sum rule and the higher twist effects
por: Chyla, Jiri, et al.
Publicado: (1992) -
Data on the Gross-Llewellyn Smith sum rule as a function of q$^{2}$
por: Bolognese, T, et al.
Publicado: (1982)