Cargando…
Worldline Green functions for multiloop diagrams
We propose a multiloop generalization of the Bern-Kosower formalism, based on Strassler's approach of evaluating worldline path integrals by worldline Green functions. Those Green functions are explicitly constructed for the basic two-loop graph, and for a loop with an arbitrary number of propa...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1994
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(94)90944-X http://cds.cern.ch/record/260940 |
_version_ | 1780886209187282944 |
---|---|
author | Schmidt, Michael G. Schubert, Christian |
author_facet | Schmidt, Michael G. Schubert, Christian |
author_sort | Schmidt, Michael G. |
collection | CERN |
description | We propose a multiloop generalization of the Bern-Kosower formalism, based on Strassler's approach of evaluating worldline path integrals by worldline Green functions. Those Green functions are explicitly constructed for the basic two-loop graph, and for a loop with an arbitrary number of propagator insertions. For scalar and abelian gauge theories, the resulting integral representations allow to combine whole classes of Feynman diagrams into compact expressions. |
id | cern-260940 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1994 |
record_format | invenio |
spelling | cern-2609402023-03-14T18:53:27Zdoi:10.1016/0370-2693(94)90944-Xhttp://cds.cern.ch/record/260940engSchmidt, Michael G.Schubert, ChristianWorldline Green functions for multiloop diagramsGeneral Theoretical PhysicsWe propose a multiloop generalization of the Bern-Kosower formalism, based on Strassler's approach of evaluating worldline path integrals by worldline Green functions. Those Green functions are explicitly constructed for the basic two-loop graph, and for a loop with an arbitrary number of propagator insertions. For scalar and abelian gauge theories, the resulting integral representations allow to combine whole classes of Feynman diagrams into compact expressions.We propose a multiloop generalization of the Bern-Kosower formalism, based on Strassler's approach of evaluating worldline path integrals by worldline Green functions. Those Green functions are explicitly constructed for the basic two-loop graph, and for a loop with an arbitrary number of propagator insertions. For scalar and abelian gauge theories, the resulting integral representations allow to combine whole classes of Feynman diagrams into compact expressions.hep-th/9403158HD-THEP-94-7DESY-94-054DESY-94-054HD-THEP-94-7oai:cds.cern.ch:2609401994 |
spellingShingle | General Theoretical Physics Schmidt, Michael G. Schubert, Christian Worldline Green functions for multiloop diagrams |
title | Worldline Green functions for multiloop diagrams |
title_full | Worldline Green functions for multiloop diagrams |
title_fullStr | Worldline Green functions for multiloop diagrams |
title_full_unstemmed | Worldline Green functions for multiloop diagrams |
title_short | Worldline Green functions for multiloop diagrams |
title_sort | worldline green functions for multiloop diagrams |
topic | General Theoretical Physics |
url | https://dx.doi.org/10.1016/0370-2693(94)90944-X http://cds.cern.ch/record/260940 |
work_keys_str_mv | AT schmidtmichaelg worldlinegreenfunctionsformultiloopdiagrams AT schubertchristian worldlinegreenfunctionsformultiloopdiagrams |