Cargando…

Classical and quantum molecular dynamics in NMR spectra

The book provides a detailed account of how condensed-phase molecular dynamics are reflected in the line shapes of NMR spectra. The theories establishing connections between random, time-dependent molecular processes and lineshape effects are exposed in depth. Special emphasis is placed on the theor...

Descripción completa

Detalles Bibliográficos
Autores principales: Szymański, Sławomir, Bernatowicz, Piotr
Lenguaje:eng
Publicado: Springer 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-90781-9
http://cds.cern.ch/record/2622027
_version_ 1780958539706007552
author Szymański, Sławomir
Bernatowicz, Piotr
author_facet Szymański, Sławomir
Bernatowicz, Piotr
author_sort Szymański, Sławomir
collection CERN
description The book provides a detailed account of how condensed-phase molecular dynamics are reflected in the line shapes of NMR spectra. The theories establishing connections between random, time-dependent molecular processes and lineshape effects are exposed in depth. Special emphasis is placed on the theoretical aspects, involving in particular intermolecular processes in solution, and molecular symmetry issues. The Liouville super-operator formalism is briefly introduced and used wherever it is beneficial for the transparency of presentation. The proposed formal descriptions of the discussed problems are sufficiently detailed to be implemented on a computer. Practical applications of the theory in solid- and liquid-phase studies are illustrated with appropriate experimental examples, exposing the potential of the lineshape method in elucidating molecular dynamics NMR-observable molecular phenomena where quantization of the spatial nuclear degrees of freedom is crucial are addressed in the last part of the book. As an introduction to this exciting research field, selected aspects of the quantum mechanics of isolated systems undergoing rotational tunnelling are reviewed, together with some basic information about quantum systems interacting with their condensed environment. The quantum theory of rate processes evidenced in the NMR lineshapes of molecular rotors is presented, and illustrated with appropriate experimental examples from both solid- and liquid-phase spectra. In this context, the everlasting problem of the quantum-to-classical transition is discussed at a quantitative level. The book will be suitable for graduate students and new and practising researchers using NMR techniques.
id cern-2622027
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
publisher Springer
record_format invenio
spelling cern-26220272021-04-21T18:48:52Zdoi:10.1007/978-3-319-90781-9http://cds.cern.ch/record/2622027engSzymański, SławomirBernatowicz, PiotrClassical and quantum molecular dynamics in NMR spectraOther Fields of PhysicsThe book provides a detailed account of how condensed-phase molecular dynamics are reflected in the line shapes of NMR spectra. The theories establishing connections between random, time-dependent molecular processes and lineshape effects are exposed in depth. Special emphasis is placed on the theoretical aspects, involving in particular intermolecular processes in solution, and molecular symmetry issues. The Liouville super-operator formalism is briefly introduced and used wherever it is beneficial for the transparency of presentation. The proposed formal descriptions of the discussed problems are sufficiently detailed to be implemented on a computer. Practical applications of the theory in solid- and liquid-phase studies are illustrated with appropriate experimental examples, exposing the potential of the lineshape method in elucidating molecular dynamics NMR-observable molecular phenomena where quantization of the spatial nuclear degrees of freedom is crucial are addressed in the last part of the book. As an introduction to this exciting research field, selected aspects of the quantum mechanics of isolated systems undergoing rotational tunnelling are reviewed, together with some basic information about quantum systems interacting with their condensed environment. The quantum theory of rate processes evidenced in the NMR lineshapes of molecular rotors is presented, and illustrated with appropriate experimental examples from both solid- and liquid-phase spectra. In this context, the everlasting problem of the quantum-to-classical transition is discussed at a quantitative level. The book will be suitable for graduate students and new and practising researchers using NMR techniques.Springeroai:cds.cern.ch:26220272018
spellingShingle Other Fields of Physics
Szymański, Sławomir
Bernatowicz, Piotr
Classical and quantum molecular dynamics in NMR spectra
title Classical and quantum molecular dynamics in NMR spectra
title_full Classical and quantum molecular dynamics in NMR spectra
title_fullStr Classical and quantum molecular dynamics in NMR spectra
title_full_unstemmed Classical and quantum molecular dynamics in NMR spectra
title_short Classical and quantum molecular dynamics in NMR spectra
title_sort classical and quantum molecular dynamics in nmr spectra
topic Other Fields of Physics
url https://dx.doi.org/10.1007/978-3-319-90781-9
http://cds.cern.ch/record/2622027
work_keys_str_mv AT szymanskisławomir classicalandquantummoleculardynamicsinnmrspectra
AT bernatowiczpiotr classicalandquantummoleculardynamicsinnmrspectra