Cargando…
Stability of KAM tori for nonlinear Schrödinger equation
The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrödinger equation \sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u, subject to Dirichlet boundary conditions u(t,0)=u(t,\pi)=0, where M_{\xi} is a real Fourier multiplier. More precisely, they s...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2622894 |
_version_ | 1780958621896540160 |
---|---|
author | Cong, Hongzi Liu, Jianjun Yuan, Xiaoping |
author_facet | Cong, Hongzi Liu, Jianjun Yuan, Xiaoping |
author_sort | Cong, Hongzi |
collection | CERN |
description | The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrödinger equation \sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u, subject to Dirichlet boundary conditions u(t,0)=u(t,\pi)=0, where M_{\xi} is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier M_{\xi}, any solution with the initial datum in the \delta-neighborhood of a KAM torus still stays in the 2\delta-neighborhood of the KAM torus for a polynomial long time such as |t|\leq \delta^{-\mathcal{M}} for any given \mathcal M with 0\leq \mathcal{M}\leq C(\varepsilon), where C(\varepsilon) is a constant depending on \varepsilon and C(\varepsilon)\rightarrow\infty as \varepsilon\rightarrow0. |
id | cern-2622894 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-26228942021-04-21T18:48:14Zhttp://cds.cern.ch/record/2622894engCong, HongziLiu, JianjunYuan, XiaopingStability of KAM tori for nonlinear Schrödinger equationMathematical Physics and MathematicsThe authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrödinger equation \sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u, subject to Dirichlet boundary conditions u(t,0)=u(t,\pi)=0, where M_{\xi} is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier M_{\xi}, any solution with the initial datum in the \delta-neighborhood of a KAM torus still stays in the 2\delta-neighborhood of the KAM torus for a polynomial long time such as |t|\leq \delta^{-\mathcal{M}} for any given \mathcal M with 0\leq \mathcal{M}\leq C(\varepsilon), where C(\varepsilon) is a constant depending on \varepsilon and C(\varepsilon)\rightarrow\infty as \varepsilon\rightarrow0.American Mathematical Societyoai:cds.cern.ch:26228942016 |
spellingShingle | Mathematical Physics and Mathematics Cong, Hongzi Liu, Jianjun Yuan, Xiaoping Stability of KAM tori for nonlinear Schrödinger equation |
title | Stability of KAM tori for nonlinear Schrödinger equation |
title_full | Stability of KAM tori for nonlinear Schrödinger equation |
title_fullStr | Stability of KAM tori for nonlinear Schrödinger equation |
title_full_unstemmed | Stability of KAM tori for nonlinear Schrödinger equation |
title_short | Stability of KAM tori for nonlinear Schrödinger equation |
title_sort | stability of kam tori for nonlinear schrödinger equation |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2622894 |
work_keys_str_mv | AT conghongzi stabilityofkamtorifornonlinearschrodingerequation AT liujianjun stabilityofkamtorifornonlinearschrodingerequation AT yuanxiaoping stabilityofkamtorifornonlinearschrodingerequation |