Cargando…

Stability of KAM tori for nonlinear Schrödinger equation

The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrödinger equation \sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u, subject to Dirichlet boundary conditions u(t,0)=u(t,\pi)=0, where M_{\xi} is a real Fourier multiplier. More precisely, they s...

Descripción completa

Detalles Bibliográficos
Autores principales: Cong, Hongzi, Liu, Jianjun, Yuan, Xiaoping
Lenguaje:eng
Publicado: American Mathematical Society 2016
Materias:
Acceso en línea:http://cds.cern.ch/record/2622894
_version_ 1780958621896540160
author Cong, Hongzi
Liu, Jianjun
Yuan, Xiaoping
author_facet Cong, Hongzi
Liu, Jianjun
Yuan, Xiaoping
author_sort Cong, Hongzi
collection CERN
description The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrödinger equation \sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u, subject to Dirichlet boundary conditions u(t,0)=u(t,\pi)=0, where M_{\xi} is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier M_{\xi}, any solution with the initial datum in the \delta-neighborhood of a KAM torus still stays in the 2\delta-neighborhood of the KAM torus for a polynomial long time such as |t|\leq \delta^{-\mathcal{M}} for any given \mathcal M with 0\leq \mathcal{M}\leq C(\varepsilon), where C(\varepsilon) is a constant depending on \varepsilon and C(\varepsilon)\rightarrow\infty as \varepsilon\rightarrow0.
id cern-2622894
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher American Mathematical Society
record_format invenio
spelling cern-26228942021-04-21T18:48:14Zhttp://cds.cern.ch/record/2622894engCong, HongziLiu, JianjunYuan, XiaopingStability of KAM tori for nonlinear Schrödinger equationMathematical Physics and MathematicsThe authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrödinger equation \sqrt{-1}\, u_{t}=u_{xx}-M_{\xi}u+\varepsilon|u|^2u, subject to Dirichlet boundary conditions u(t,0)=u(t,\pi)=0, where M_{\xi} is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier M_{\xi}, any solution with the initial datum in the \delta-neighborhood of a KAM torus still stays in the 2\delta-neighborhood of the KAM torus for a polynomial long time such as |t|\leq \delta^{-\mathcal{M}} for any given \mathcal M with 0\leq \mathcal{M}\leq C(\varepsilon), where C(\varepsilon) is a constant depending on \varepsilon and C(\varepsilon)\rightarrow\infty as \varepsilon\rightarrow0.American Mathematical Societyoai:cds.cern.ch:26228942016
spellingShingle Mathematical Physics and Mathematics
Cong, Hongzi
Liu, Jianjun
Yuan, Xiaoping
Stability of KAM tori for nonlinear Schrödinger equation
title Stability of KAM tori for nonlinear Schrödinger equation
title_full Stability of KAM tori for nonlinear Schrödinger equation
title_fullStr Stability of KAM tori for nonlinear Schrödinger equation
title_full_unstemmed Stability of KAM tori for nonlinear Schrödinger equation
title_short Stability of KAM tori for nonlinear Schrödinger equation
title_sort stability of kam tori for nonlinear schrödinger equation
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2622894
work_keys_str_mv AT conghongzi stabilityofkamtorifornonlinearschrodingerequation
AT liujianjun stabilityofkamtorifornonlinearschrodingerequation
AT yuanxiaoping stabilityofkamtorifornonlinearschrodingerequation