Cargando…

Moduli of double EPW-sextics

The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the...

Descripción completa

Detalles Bibliográficos
Autor principal: O'Grady, Kieran G
Lenguaje:eng
Publicado: American Mathematical Society 2016
Materias:
Acceso en línea:http://cds.cern.ch/record/2622896
_version_ 1780958622321213440
author O'Grady, Kieran G
author_facet O'Grady, Kieran G
author_sort O'Grady, Kieran G
collection CERN
description The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds.
id cern-2622896
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher American Mathematical Society
record_format invenio
spelling cern-26228962021-04-21T18:48:14Zhttp://cds.cern.ch/record/2622896engO'Grady, Kieran GModuli of double EPW-sexticsMathematical Physics and MathematicsThe author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds.American Mathematical Societyoai:cds.cern.ch:26228962016
spellingShingle Mathematical Physics and Mathematics
O'Grady, Kieran G
Moduli of double EPW-sextics
title Moduli of double EPW-sextics
title_full Moduli of double EPW-sextics
title_fullStr Moduli of double EPW-sextics
title_full_unstemmed Moduli of double EPW-sextics
title_short Moduli of double EPW-sextics
title_sort moduli of double epw-sextics
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2622896
work_keys_str_mv AT ogradykierang moduliofdoubleepwsextics