Cargando…
Moduli of double EPW-sextics
The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2622896 |
_version_ | 1780958622321213440 |
---|---|
author | O'Grady, Kieran G |
author_facet | O'Grady, Kieran G |
author_sort | O'Grady, Kieran G |
collection | CERN |
description | The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds. |
id | cern-2622896 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-26228962021-04-21T18:48:14Zhttp://cds.cern.ch/record/2622896engO'Grady, Kieran GModuli of double EPW-sexticsMathematical Physics and MathematicsThe author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of \bigwedge^3{\mathbb C}^6 modulo the natural action of \mathrm{SL}_6, call it \mathfrak{M}. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK 4-folds of Type K3^{[2]} polarized by a divisor of square 2 for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic 4-folds.American Mathematical Societyoai:cds.cern.ch:26228962016 |
spellingShingle | Mathematical Physics and Mathematics O'Grady, Kieran G Moduli of double EPW-sextics |
title | Moduli of double EPW-sextics |
title_full | Moduli of double EPW-sextics |
title_fullStr | Moduli of double EPW-sextics |
title_full_unstemmed | Moduli of double EPW-sextics |
title_short | Moduli of double EPW-sextics |
title_sort | moduli of double epw-sextics |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2622896 |
work_keys_str_mv | AT ogradykierang moduliofdoubleepwsextics |