Cargando…

The Fourier transform for certain hyperkähler fourfolds

Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \mathrm{CH}^*(A). By using a codimension-2 algebraic cycle...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Mingmin, Vial, Charles
Lenguaje:eng
Publicado: American Mathematical Society 2016
Materias:
Acceso en línea:http://cds.cern.ch/record/2622899
Descripción
Sumario:Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \mathrm{CH}^*(A). By using a codimension-2 algebraic cycle representing the Beauvilleâe"Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkähler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.