Cargando…
The Fourier transform for certain hyperkähler fourfolds
Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \mathrm{CH}^*(A). By using a codimension-2 algebraic cycle...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2622899 |
_version_ | 1780958622963990528 |
---|---|
author | Shen, Mingmin Vial, Charles |
author_facet | Shen, Mingmin Vial, Charles |
author_sort | Shen, Mingmin |
collection | CERN |
description | Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \mathrm{CH}^*(A). By using a codimension-2 algebraic cycle representing the Beauvilleâe"Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkähler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold. |
id | cern-2622899 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-26228992021-04-21T18:48:13Zhttp://cds.cern.ch/record/2622899engShen, MingminVial, CharlesThe Fourier transform for certain hyperkähler fourfoldsMathematical Physics and MathematicsUsing a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \mathrm{CH}^*(A). By using a codimension-2 algebraic cycle representing the Beauvilleâe"Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkähler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.American Mathematical Societyoai:cds.cern.ch:26228992016 |
spellingShingle | Mathematical Physics and Mathematics Shen, Mingmin Vial, Charles The Fourier transform for certain hyperkähler fourfolds |
title | The Fourier transform for certain hyperkähler fourfolds |
title_full | The Fourier transform for certain hyperkähler fourfolds |
title_fullStr | The Fourier transform for certain hyperkähler fourfolds |
title_full_unstemmed | The Fourier transform for certain hyperkähler fourfolds |
title_short | The Fourier transform for certain hyperkähler fourfolds |
title_sort | fourier transform for certain hyperkähler fourfolds |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2622899 |
work_keys_str_mv | AT shenmingmin thefouriertransformforcertainhyperkahlerfourfolds AT vialcharles thefouriertransformforcertainhyperkahlerfourfolds AT shenmingmin fouriertransformforcertainhyperkahlerfourfolds AT vialcharles fouriertransformforcertainhyperkahlerfourfolds |