Cargando…

The Fourier transform for certain hyperkähler fourfolds

Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \mathrm{CH}^*(A). By using a codimension-2 algebraic cycle...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Mingmin, Vial, Charles
Lenguaje:eng
Publicado: American Mathematical Society 2016
Materias:
Acceso en línea:http://cds.cern.ch/record/2622899
_version_ 1780958622963990528
author Shen, Mingmin
Vial, Charles
author_facet Shen, Mingmin
Vial, Charles
author_sort Shen, Mingmin
collection CERN
description Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \mathrm{CH}^*(A). By using a codimension-2 algebraic cycle representing the Beauvilleâe"Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkähler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.
id cern-2622899
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher American Mathematical Society
record_format invenio
spelling cern-26228992021-04-21T18:48:13Zhttp://cds.cern.ch/record/2622899engShen, MingminVial, CharlesThe Fourier transform for certain hyperkähler fourfoldsMathematical Physics and MathematicsUsing a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring \mathrm{CH}^*(A). By using a codimension-2 algebraic cycle representing the Beauvilleâe"Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkähler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.American Mathematical Societyoai:cds.cern.ch:26228992016
spellingShingle Mathematical Physics and Mathematics
Shen, Mingmin
Vial, Charles
The Fourier transform for certain hyperkähler fourfolds
title The Fourier transform for certain hyperkähler fourfolds
title_full The Fourier transform for certain hyperkähler fourfolds
title_fullStr The Fourier transform for certain hyperkähler fourfolds
title_full_unstemmed The Fourier transform for certain hyperkähler fourfolds
title_short The Fourier transform for certain hyperkähler fourfolds
title_sort fourier transform for certain hyperkähler fourfolds
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2622899
work_keys_str_mv AT shenmingmin thefouriertransformforcertainhyperkahlerfourfolds
AT vialcharles thefouriertransformforcertainhyperkahlerfourfolds
AT shenmingmin fouriertransformforcertainhyperkahlerfourfolds
AT vialcharles fouriertransformforcertainhyperkahlerfourfolds