Cargando…
A vector field method on the distorted Fourier side and decay for wave equations with potentials
The authors study the Cauchy problem for the one-dimensional wave equation \partial_t^2 u(t,x)-\partial_x^2 u(t,x)+V(x)u(t,x)=0. The potential V is assumed to be smooth with asymptotic behavior V(x)\sim -\tfrac14 |x|^{-2}\mbox{ as } |x|\to \infty. They derive dispersive estimates, energy estimates,...
Autores principales: | Donninger, Roland, Krieger, Joachim |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2622902 |
Ejemplares similares
-
On a Fourier method for the integration of hyperbolic equations
por: Fornberg, B
Publicado: (1974) -
Fourier Series and Numerical Methods for Partial Differential Equations
por: Bernatz, Richard
Publicado: (2010) -
An introduction to fast Fourier transform methods for partial differential equations, with applications
por: Pickering, Morgan
Publicado: (1986) -
Energy Decay Rate Of Wave Equations With Indefinite Damping
por: Benaddi, A, et al.
Publicado: (1999) -
Fourier Analysis and Nonlinear Partial Differential Equations
por: Bahouri, Hajer, et al.
Publicado: (2011)