Cargando…

Proof of the 1-factorization and Hamilton decomposition conjectures

In this paper the authors prove the following results (via a unified approach) for all sufficiently large n: (i) [1-factorization conjecture] Suppose that n is even and D\geq 2\lceil n/4\rceil -1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. Equivalently, \c...

Descripción completa

Detalles Bibliográficos
Autores principales: Csaba, Béla, Kühn, Daniela, Lo, Allan, Osthus, Deryk, Treglown, Andrew
Lenguaje:eng
Publicado: American Mathematical Society 2016
Materias:
Acceso en línea:http://cds.cern.ch/record/2622914
_version_ 1780958626221916160
author Csaba, Béla
Kühn, Daniela
Lo, Allan
Osthus, Deryk
Treglown, Andrew
author_facet Csaba, Béla
Kühn, Daniela
Lo, Allan
Osthus, Deryk
Treglown, Andrew
author_sort Csaba, Béla
collection CERN
description In this paper the authors prove the following results (via a unified approach) for all sufficiently large n: (i) [1-factorization conjecture] Suppose that n is even and D\geq 2\lceil n/4\rceil -1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. Equivalently, \chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D \ge \lfloor n/2 \rfloor . Then every D-regular graph G on n vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on n vertices with minimum degree \delta\ge n/2. Then G contains at least {\rm reg}_{\rm even}(n,\delta)/2 \ge (n-2)/8 edge-disjoint Hamilton cycles. Here {\rm reg}_{\rm even}(n,\delta) denotes the degree of the largest even-regular spanning subgraph one can guarantee in a graph on n vertices with minimum degree \delta. (i) was first explicitly stated by Chetwynd and Hilton. (ii) and the special case \delta= \lceil n/2 \rceil of (iii) answer questions of Nash-Williams from 1970. All of the above bounds are best possible.
id cern-2622914
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher American Mathematical Society
record_format invenio
spelling cern-26229142021-04-21T18:48:10Zhttp://cds.cern.ch/record/2622914engCsaba, BélaKühn, DanielaLo, AllanOsthus, DerykTreglown, AndrewProof of the 1-factorization and Hamilton decomposition conjecturesMathematical Physics and MathematicsIn this paper the authors prove the following results (via a unified approach) for all sufficiently large n: (i) [1-factorization conjecture] Suppose that n is even and D\geq 2\lceil n/4\rceil -1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. Equivalently, \chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D \ge \lfloor n/2 \rfloor . Then every D-regular graph G on n vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) [Optimal packings of Hamilton cycles] Suppose that G is a graph on n vertices with minimum degree \delta\ge n/2. Then G contains at least {\rm reg}_{\rm even}(n,\delta)/2 \ge (n-2)/8 edge-disjoint Hamilton cycles. Here {\rm reg}_{\rm even}(n,\delta) denotes the degree of the largest even-regular spanning subgraph one can guarantee in a graph on n vertices with minimum degree \delta. (i) was first explicitly stated by Chetwynd and Hilton. (ii) and the special case \delta= \lceil n/2 \rceil of (iii) answer questions of Nash-Williams from 1970. All of the above bounds are best possible.American Mathematical Societyoai:cds.cern.ch:26229142016
spellingShingle Mathematical Physics and Mathematics
Csaba, Béla
Kühn, Daniela
Lo, Allan
Osthus, Deryk
Treglown, Andrew
Proof of the 1-factorization and Hamilton decomposition conjectures
title Proof of the 1-factorization and Hamilton decomposition conjectures
title_full Proof of the 1-factorization and Hamilton decomposition conjectures
title_fullStr Proof of the 1-factorization and Hamilton decomposition conjectures
title_full_unstemmed Proof of the 1-factorization and Hamilton decomposition conjectures
title_short Proof of the 1-factorization and Hamilton decomposition conjectures
title_sort proof of the 1-factorization and hamilton decomposition conjectures
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2622914
work_keys_str_mv AT csababela proofofthe1factorizationandhamiltondecompositionconjectures
AT kuhndaniela proofofthe1factorizationandhamiltondecompositionconjectures
AT loallan proofofthe1factorizationandhamiltondecompositionconjectures
AT osthusderyk proofofthe1factorizationandhamiltondecompositionconjectures
AT treglownandrew proofofthe1factorizationandhamiltondecompositionconjectures