Cargando…
Proof of the 1-factorization and Hamilton decomposition conjectures
In this paper the authors prove the following results (via a unified approach) for all sufficiently large n: (i) [1-factorization conjecture] Suppose that n is even and D\geq 2\lceil n/4\rceil -1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. Equivalently, \c...
Autores principales: | Csaba, Béla, Kühn, Daniela, Lo, Allan, Osthus, Deryk, Treglown, Andrew |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2622914 |
Ejemplares similares
-
Analytic proof of the Sutherland conjecture
por: Inozemtsev, V I
Publicado: (1996) -
The Kepler Conjecture: The Hales-Ferguson Proof
por: Lagarias, Jeffrey
Publicado: (2011) -
Cayley-Hamilton Decomposition and Spectral Asymmetry
por: Ponge, R
Publicado: (2004) -
Proof of the q-Macdonald-Morris conjecture for BCn
por: Kadell, Kevin WJ, et al.
Publicado: (2014) -
A proof of the cyclic sum conjecture for multiple zeta values
por: Ohno, Y
Publicado: (2000)