Cargando…

To an effective local Langlands correspondence

Let F be a non-Archimedean local field. Let \mathcal{W}_{F} be the Weil group of F and \mathcal{P}_{F} the wild inertia subgroup of \mathcal{W}_{F}. Let \widehat {\mathcal{W}}_{F} be the set of equivalence classes of irreducible smooth representations of \mathcal{W}_{F}. Let \mathcal{A}^{0}_{n}(F) d...

Descripción completa

Detalles Bibliográficos
Autores principales: Bushnell, Colin J, Henniart, Guy
Lenguaje:eng
Publicado: American Mathematical Society 2014
Materias:
Acceso en línea:http://cds.cern.ch/record/2623062
_version_ 1780958652798074880
author Bushnell, Colin J
Henniart, Guy
author_facet Bushnell, Colin J
Henniart, Guy
author_sort Bushnell, Colin J
collection CERN
description Let F be a non-Archimedean local field. Let \mathcal{W}_{F} be the Weil group of F and \mathcal{P}_{F} the wild inertia subgroup of \mathcal{W}_{F}. Let \widehat {\mathcal{W}}_{F} be the set of equivalence classes of irreducible smooth representations of \mathcal{W}_{F}. Let \mathcal{A}^{0}_{n}(F) denote the set of equivalence classes of irreducible cuspidal representations of \mathrm{GL}_{n}(F) and set \widehat {\mathrm{GL}}_{F} = \bigcup _{n\ge 1} \mathcal{A}^{0}_{n}(F). If \sigma \in \widehat {\mathcal{W}}_{F}, let ^{L}{\sigma }\in \widehat {\mathrm{GL}}_{F} be the cuspidal representation matched with \sigma by the Langlands Correspondence. If \sigma is totally wildly ramified, in that its restriction to \mathcal{P}_{F} is irreducible, the authors treat ^{L}{\sigma} as known. From that starting point, the authors construct an explicit bijection \mathbb{N}:\widehat {\mathcal{W}}_{F} \to \widehat {\mathrm{GL}}_{F}, sending \sigma to ^{N}{\sigma}. The authors compare this "naïve correspondence" with the Langlands correspondence and so achieve an effective description of the latter, modulo the totally wildly ramified case. A key tool is a novel operation of "internal twisting" of a suitable representation \pi (of \mathcal{W}_{F} or \mathrm{GL}_{n}(F)) by tame characters of a tamely ramified field extension of F, canonically associated to \pi . The authors show this operation is preserved by the Langlands correspondence.
id cern-2623062
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
publisher American Mathematical Society
record_format invenio
spelling cern-26230622021-04-21T18:47:47Zhttp://cds.cern.ch/record/2623062engBushnell, Colin JHenniart, GuyTo an effective local Langlands correspondenceMathematical Physics and MathematicsLet F be a non-Archimedean local field. Let \mathcal{W}_{F} be the Weil group of F and \mathcal{P}_{F} the wild inertia subgroup of \mathcal{W}_{F}. Let \widehat {\mathcal{W}}_{F} be the set of equivalence classes of irreducible smooth representations of \mathcal{W}_{F}. Let \mathcal{A}^{0}_{n}(F) denote the set of equivalence classes of irreducible cuspidal representations of \mathrm{GL}_{n}(F) and set \widehat {\mathrm{GL}}_{F} = \bigcup _{n\ge 1} \mathcal{A}^{0}_{n}(F). If \sigma \in \widehat {\mathcal{W}}_{F}, let ^{L}{\sigma }\in \widehat {\mathrm{GL}}_{F} be the cuspidal representation matched with \sigma by the Langlands Correspondence. If \sigma is totally wildly ramified, in that its restriction to \mathcal{P}_{F} is irreducible, the authors treat ^{L}{\sigma} as known. From that starting point, the authors construct an explicit bijection \mathbb{N}:\widehat {\mathcal{W}}_{F} \to \widehat {\mathrm{GL}}_{F}, sending \sigma to ^{N}{\sigma}. The authors compare this "naïve correspondence" with the Langlands correspondence and so achieve an effective description of the latter, modulo the totally wildly ramified case. A key tool is a novel operation of "internal twisting" of a suitable representation \pi (of \mathcal{W}_{F} or \mathrm{GL}_{n}(F)) by tame characters of a tamely ramified field extension of F, canonically associated to \pi . The authors show this operation is preserved by the Langlands correspondence.American Mathematical Societyoai:cds.cern.ch:26230622014
spellingShingle Mathematical Physics and Mathematics
Bushnell, Colin J
Henniart, Guy
To an effective local Langlands correspondence
title To an effective local Langlands correspondence
title_full To an effective local Langlands correspondence
title_fullStr To an effective local Langlands correspondence
title_full_unstemmed To an effective local Langlands correspondence
title_short To an effective local Langlands correspondence
title_sort to an effective local langlands correspondence
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2623062
work_keys_str_mv AT bushnellcolinj toaneffectivelocallanglandscorrespondence
AT henniartguy toaneffectivelocallanglandscorrespondence