Cargando…

Geometry and billiards

Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a...

Descripción completa

Detalles Bibliográficos
Autor principal: Tabachnikov, Serge
Lenguaje:eng
Publicado: American Mathematical Society 2005
Materias:
Acceso en línea:http://cds.cern.ch/record/2623093
Descripción
Sumario:Mathematical billiards describe the motion of a mass point in a domain with elastic reflections off the boundary or, equivalently, the behavior of rays of light in a domain with ideally reflecting boundary. From the point of view of differential geometry, the billiard flow is the geodesic flow on a manifold with boundary. This book is devoted to billiards in their relation with differential geometry, classical mechanics, and geometrical optics. The topics covered include variational principles of billiard motion, symplectic geometry of rays of light and integral geometry, existence and nonexistence of caustics, optical properties of conics and quadrics and completely integrable billiards, periodic billiard trajectories, polygonal billiards, mechanisms of chaos in billiard dynamics, and the lesser-known subject of dual (or outer) billiards. The book is based on an advanced undergraduate topics course (but contains more material than can be realistically taught in one semester). Although the minimum prerequisites include only the standard material usually covered in the first two years of college (the entire calculus sequence, linear algebra), readers should show some mathematical maturity and strongly rely on their mathematical common sense. As a reward, they will be taken to the forefront of current research. A special feature of the book is a substantial number of digressions covering diverse topics related to billiards: evolutes and involutes of plane curves, the 4-vertex theorem, a mathematical theory of rainbows, distribution of first digits in various sequences, Morse theory, the Poincar� recurrence theorem, Hilbert's fourth problem, Poncelet porism, and many others.