Cargando…

Generalized analytic continuation

The theory of generalized analytic continuation studies continuations of meromorphic functions in situations where traditional theory says there is a natural boundary. This broader theory touches on a remarkable array of topics in classical analysis, as described in the book. This book addresses the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ross, William T, Shapiro, Harold S
Lenguaje:eng
Publicado: American Mathematical Society 2002
Materias:
Acceso en línea:http://cds.cern.ch/record/2623116
_version_ 1780958664556806144
author Ross, William T
Shapiro, Harold S
author_facet Ross, William T
Shapiro, Harold S
author_sort Ross, William T
collection CERN
description The theory of generalized analytic continuation studies continuations of meromorphic functions in situations where traditional theory says there is a natural boundary. This broader theory touches on a remarkable array of topics in classical analysis, as described in the book. This book addresses the following questions: (1) When can we say, in some reasonable way, that component functions of a meromorphic function on a disconnected domain, are "continuations" of each other? (2) What role do such "continuations" play in certain aspects of approximation theory and operator theory? The authors use the strong analogy with the summability of divergent series to motivate the subject. In this vein, for instance, theorems can be described as being "Abelian" or "Tauberian". The introductory overview carefully explains the history and context of the theory. The authors begin with a review of the works of Poincaré, Borel, Wolff, Walsh, and Gončar, on continuation properties of "Borel series" and other meromorphic functions that are limits of rapidly convergent sequences of rational functions. They then move on to the work of Tumarkin, who looked at the continuation properties of functions in the classical Hardy space of the disk in terms of the concept of "pseudocontinuation". Tumarkin's work was seen in a different light by Douglas, Shapiro, and Shields in their discovery of a characterization of the cyclic vectors for the backward shift operator on the Hardy space. The authors cover this important concept of "pseudocontinuation" quite thoroughly since it appears in many areas of analysis. They also add a new and previously unpublished method of "continuation" to the list, based on formal multiplication of trigonometric series, which can be used to examine the backward shift operator on many spaces of analytic functions. The book attempts to unify the various types of "continuations" and suggests some interesting open questions.
id cern-2623116
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2002
publisher American Mathematical Society
record_format invenio
spelling cern-26231162021-04-21T18:47:36Zhttp://cds.cern.ch/record/2623116engRoss, William TShapiro, Harold SGeneralized analytic continuationMathematical Physics and MathematicsThe theory of generalized analytic continuation studies continuations of meromorphic functions in situations where traditional theory says there is a natural boundary. This broader theory touches on a remarkable array of topics in classical analysis, as described in the book. This book addresses the following questions: (1) When can we say, in some reasonable way, that component functions of a meromorphic function on a disconnected domain, are "continuations" of each other? (2) What role do such "continuations" play in certain aspects of approximation theory and operator theory? The authors use the strong analogy with the summability of divergent series to motivate the subject. In this vein, for instance, theorems can be described as being "Abelian" or "Tauberian". The introductory overview carefully explains the history and context of the theory. The authors begin with a review of the works of Poincaré, Borel, Wolff, Walsh, and Gončar, on continuation properties of "Borel series" and other meromorphic functions that are limits of rapidly convergent sequences of rational functions. They then move on to the work of Tumarkin, who looked at the continuation properties of functions in the classical Hardy space of the disk in terms of the concept of "pseudocontinuation". Tumarkin's work was seen in a different light by Douglas, Shapiro, and Shields in their discovery of a characterization of the cyclic vectors for the backward shift operator on the Hardy space. The authors cover this important concept of "pseudocontinuation" quite thoroughly since it appears in many areas of analysis. They also add a new and previously unpublished method of "continuation" to the list, based on formal multiplication of trigonometric series, which can be used to examine the backward shift operator on many spaces of analytic functions. The book attempts to unify the various types of "continuations" and suggests some interesting open questions.American Mathematical Societyoai:cds.cern.ch:26231162002
spellingShingle Mathematical Physics and Mathematics
Ross, William T
Shapiro, Harold S
Generalized analytic continuation
title Generalized analytic continuation
title_full Generalized analytic continuation
title_fullStr Generalized analytic continuation
title_full_unstemmed Generalized analytic continuation
title_short Generalized analytic continuation
title_sort generalized analytic continuation
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2623116
work_keys_str_mv AT rosswilliamt generalizedanalyticcontinuation
AT shapiroharolds generalizedanalyticcontinuation