Cargando…

Quadratic algebras

Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Polishchuk, Alexander, Positselski, Leonid
Lenguaje:eng
Publicado: American Mathematical Society 2005
Materias:
Acceso en línea:http://cds.cern.ch/record/2623126
_version_ 1780958666721067008
author Polishchuk, Alexander
Positselski, Leonid
author_facet Polishchuk, Alexander
Positselski, Leonid
author_sort Polishchuk, Alexander
collection CERN
description Quadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.
id cern-2623126
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2005
publisher American Mathematical Society
record_format invenio
spelling cern-26231262021-04-21T18:47:34Zhttp://cds.cern.ch/record/2623126engPolishchuk, AlexanderPositselski, LeonidQuadratic algebrasMathematical Physics and MathematicsQuadratic algebras, i.e., algebras defined by quadratic relations, often occur in various areas of mathematics. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, noncommutative geometry, K-theory, number theory, and noncommutative linear algebra. The book offers a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincar�-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes.American Mathematical Societyoai:cds.cern.ch:26231262005
spellingShingle Mathematical Physics and Mathematics
Polishchuk, Alexander
Positselski, Leonid
Quadratic algebras
title Quadratic algebras
title_full Quadratic algebras
title_fullStr Quadratic algebras
title_full_unstemmed Quadratic algebras
title_short Quadratic algebras
title_sort quadratic algebras
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2623126
work_keys_str_mv AT polishchukalexander quadraticalgebras
AT positselskileonid quadraticalgebras