Cargando…
Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori
This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative d-torus \mathbb{T}^d_\theta (with \theta a skew symmetric real d\times d-matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic propertie...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2623211 |
Sumario: | This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative d-torus \mathbb{T}^d_\theta (with \theta a skew symmetric real d\times d-matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincar� type inequality for Sobolev spaces. |
---|