Cargando…

Learning New Physics from a Machine

We propose using neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The virtues of neural networks as unbiased function approximants make them particularly suited for this task. An algorithm tha...

Descripción completa

Detalles Bibliográficos
Autores principales: D'Agnolo, Raffaele Tito, Wulzer, Andrea
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.99.015014
http://cds.cern.ch/record/2627052