Cargando…
Structurally unstable quadratic vector fields of codimension one
Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modul...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-92117-4 http://cds.cern.ch/record/2628685 |
_version_ | 1780959186121654272 |
---|---|
author | Artés, Joan C Llibre, Jaume Rezende, Alex C |
author_facet | Artés, Joan C Llibre, Jaume Rezende, Alex C |
author_sort | Artés, Joan C |
collection | CERN |
description | Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. . |
id | cern-2628685 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
publisher | Springer |
record_format | invenio |
spelling | cern-26286852021-04-21T18:46:28Zdoi:10.1007/978-3-319-92117-4http://cds.cern.ch/record/2628685engArtés, Joan CLlibre, JaumeRezende, Alex CStructurally unstable quadratic vector fields of codimension oneMathematical Physics and MathematicsOriginating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. .Springeroai:cds.cern.ch:26286852018 |
spellingShingle | Mathematical Physics and Mathematics Artés, Joan C Llibre, Jaume Rezende, Alex C Structurally unstable quadratic vector fields of codimension one |
title | Structurally unstable quadratic vector fields of codimension one |
title_full | Structurally unstable quadratic vector fields of codimension one |
title_fullStr | Structurally unstable quadratic vector fields of codimension one |
title_full_unstemmed | Structurally unstable quadratic vector fields of codimension one |
title_short | Structurally unstable quadratic vector fields of codimension one |
title_sort | structurally unstable quadratic vector fields of codimension one |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-319-92117-4 http://cds.cern.ch/record/2628685 |
work_keys_str_mv | AT artesjoanc structurallyunstablequadraticvectorfieldsofcodimensionone AT llibrejaume structurallyunstablequadraticvectorfieldsofcodimensionone AT rezendealexc structurallyunstablequadraticvectorfieldsofcodimensionone |