Cargando…

Structurally unstable quadratic vector fields of codimension one

Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modul...

Descripción completa

Detalles Bibliográficos
Autores principales: Artés, Joan C, Llibre, Jaume, Rezende, Alex C
Lenguaje:eng
Publicado: Springer 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-92117-4
http://cds.cern.ch/record/2628685
_version_ 1780959186121654272
author Artés, Joan C
Llibre, Jaume
Rezende, Alex C
author_facet Artés, Joan C
Llibre, Jaume
Rezende, Alex C
author_sort Artés, Joan C
collection CERN
description Originating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. .
id cern-2628685
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
publisher Springer
record_format invenio
spelling cern-26286852021-04-21T18:46:28Zdoi:10.1007/978-3-319-92117-4http://cds.cern.ch/record/2628685engArtés, Joan CLlibre, JaumeRezende, Alex CStructurally unstable quadratic vector fields of codimension oneMathematical Physics and MathematicsOriginating from research in the qualitative theory of ordinary differential equations, this book follows the authors’ work on structurally stable planar quadratic polynomial differential systems. In the present work the authors aim at finding all possible phase portraits in the Poincaré disc, modulo limit cycles, of planar quadratic polynomial differential systems manifesting the simplest level of structural instability. They prove that there are at most 211 and at least 204 of them. .Springeroai:cds.cern.ch:26286852018
spellingShingle Mathematical Physics and Mathematics
Artés, Joan C
Llibre, Jaume
Rezende, Alex C
Structurally unstable quadratic vector fields of codimension one
title Structurally unstable quadratic vector fields of codimension one
title_full Structurally unstable quadratic vector fields of codimension one
title_fullStr Structurally unstable quadratic vector fields of codimension one
title_full_unstemmed Structurally unstable quadratic vector fields of codimension one
title_short Structurally unstable quadratic vector fields of codimension one
title_sort structurally unstable quadratic vector fields of codimension one
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-319-92117-4
http://cds.cern.ch/record/2628685
work_keys_str_mv AT artesjoanc structurallyunstablequadraticvectorfieldsofcodimensionone
AT llibrejaume structurallyunstablequadraticvectorfieldsofcodimensionone
AT rezendealexc structurallyunstablequadraticvectorfieldsofcodimensionone