Cargando…
Seifert fibering operators in 3d $\mathcal{N}=2$ theories
We study 3d $ \mathcal{N}=2 $ supersymmetric gauge theories on closed oriented Seifert manifolds — circle bundles over an orbifold Riemann surface —, with a gauge group G given by a product of simply-connected and/or unitary Lie groups. Our main result is an exact formula for the supersymmetric part...
Autores principales: | Closset, Cyril, Kim, Heeyeon, Willett, Brian |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP11(2018)004 http://cds.cern.ch/record/2629915 |
Ejemplares similares
-
$\mathcal{N}{=}1$ supersymmetric indices and the four-dimensional A-model
por: Closset, Cyril, et al.
Publicado: (2017) -
Supersymmetric partition functions and the three-dimensional A-twist
por: Closset, Cyril, et al.
Publicado: (2017) -
The Space of Vacua of 3d $\mathcal{N}=3$ Abelian Theories
por: Assel, Benjamin
Publicado: (2017) -
Wilson loops in 5d $\mathcal{N}=1$ theories and S-duality
por: Assel, Benjamin, et al.
Publicado: (2018) -
Composite operators and form factors in ${\mathcal N} = 4$ SYM
por: Chicherin, Dmitry, et al.
Publicado: (2016)