Cargando…
Automorphisms of manifolds and algebraic
The structure space \mathcal{S}(M) of a closed topological m-manifold M classifies bundles whose fibers are closed m-manifolds equipped with a homotopy equivalence to M. The authors construct a highly connected map from \mathcal{S}(M) to a concoction of algebraic L-theory and algebraic K-theory spac...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2014
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2630765 |
Sumario: | The structure space \mathcal{S}(M) of a closed topological m-manifold M classifies bundles whose fibers are closed m-manifolds equipped with a homotopy equivalence to M. The authors construct a highly connected map from \mathcal{S}(M) to a concoction of algebraic L-theory and algebraic K-theory spaces associated with M. The construction refines the well-known surgery theoretic analysis of the block structure space of M in terms of L-theory. |
---|