Cargando…
Topology classification with deep learning to improve real-time event selection at the LHC
We show how an event topology classification based on deep learning could be used to improve the purity of data samples selected in real time at the Large Hadron Collider. We consider different data representations, on which different kinds of multi-class classifiers are trained. Both raw data and h...
Autores principales: | Nguyen, Thong Q., Weitekamp, Daniel, Anderson, Dustin, Castello, Roberto, Cerri, Olmo, Pierini, Maurizio, Spiropulu, Maria, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-019-0028-1 http://cds.cern.ch/record/2631618 |
Ejemplares similares
-
Variational Autoencoders for New Physics Mining at the Large Hadron Collider
por: Cerri, Olmo, et al.
Publicado: (2018) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark
por: Knapp, Oliver, et al.
Publicado: (2020) -
Particle Graph Autoencoders and Differentiable, Learned Energy Mover's Distance
por: Tsan, Steven, et al.
Publicado: (2021) -
Data Augmentation at the LHC through Analysis-specific Fast Simulation with Deep Learning
por: Chen, Cheng, et al.
Publicado: (2020)