Cargando…
Using holistic event information in the trigger
In order to achieve the data rates proposed for the future Run 3 upgrade of the LHCb detector, new processing models must be developed to deal with the increased throughput. For this reason we aim to investigate the feasibility of purely data-driven 'holistic' methods, with the constraint...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2632767 |
Sumario: | In order to achieve the data rates proposed for the future Run 3 upgrade of the LHCb detector, new processing models must be developed to deal with the increased throughput. For this reason we aim to investigate the feasibility of purely data-driven 'holistic' methods, with the constraint of introducing minimal computational overhead, hence using only raw detector information. These filters should be unbiased - having a neutral effect with respect to the studied physics channels. In particular, the use of machine learning based methods seems particularly suitable, potentially providing a natural formulation for heuristic-free, unbiased filters whose objective would be to optimize between throughput and bandwidth. |
---|