Cargando…
Coaction for Feynman integrals and diagrams
We propose a general coaction for families of integrals appearing in the evaluation of Feynman diagrams, such as multiple polylogarithms and generalized hypergeometric functions. We further conjecture a link between this coaction and graphical operations on Feynman diagrams. At one-loop order, there...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.303.0047 http://cds.cern.ch/record/2633177 |
Sumario: | We propose a general coaction for families of integrals appearing in the evaluation of Feynman diagrams, such as multiple polylogarithms and generalized hypergeometric functions. We further conjecture a link between this coaction and graphical operations on Feynman diagrams. At one-loop order, there is a basis of integrals for which this correspondence is fully explicit. We discuss features and present examples of the diagrammatic coaction on two-loop integrals. We also present the coaction for the functions ${}_{p+1}F_p$ and Appell $F_1$. |
---|