Cargando…
Coaction for Feynman integrals and diagrams
We propose a general coaction for families of integrals appearing in the evaluation of Feynman diagrams, such as multiple polylogarithms and generalized hypergeometric functions. We further conjecture a link between this coaction and graphical operations on Feynman diagrams. At one-loop order, there...
Autores principales: | Abreu, Samuel, Britto, Ruth, Duhr, Claude, Gardi, Einan, Matthew, James |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.303.0047 http://cds.cern.ch/record/2633177 |
Ejemplares similares
-
The diagrammatic coaction and the algebraic structure of cut Feynman integrals
por: Abreu, Samuel, et al.
Publicado: (2018) -
Diagrammatic Coaction of Two-Loop Feynman Integrals
por: Abreu, Samuel, et al.
Publicado: (2019) -
The algebraic structure of cut Feynman integrals and the diagrammatic coaction
por: Abreu, Samuel, et al.
Publicado: (2017) -
The diagrammatic coaction beyond one loop
por: Abreu, Samuel, et al.
Publicado: (2021) -
Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case
por: Abreu, Samuel, et al.
Publicado: (2017)