Cargando…
Searches for new physics with jet substructure
The high energy scale of the LHC and the large associated Lorentz boost of hadronically decaying massive particles has resulted in the creation of a new approach to jet identification. Jet substructure, or the use of angular and energy distributions within jets, has proven to be a powerful means of...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2633480 |
Sumario: | The high energy scale of the LHC and the large associated Lorentz boost of hadronically decaying massive particles has resulted in the creation of a new approach to jet identification. Jet substructure, or the use of angular and energy distributions within jets, has proven to be a powerful means of differentiating between hadronic decays of massive particles and QCD multijets production. This rapidly evolving field is now a key part of the ATLAS and CMS physics programs, and is frequently used to identify W/Z bosons, H bosons, top quarks, and more. In particular, jet substructure techniques have become a critical tool in the search for new physics, both extending past results into new regimes and opening up new possibilities and new analysis strategies. I will present an overview of the many uses of jet substructure as applied to the search for new physics by both the ATLAS and CMS collaborations, as well as a brief outlook into how jet substructure techniques are being refined for the next set of search results. |
---|