Cargando…

The gradient discretisation method

This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provide...

Descripción completa

Detalles Bibliográficos
Autores principales: Droniou, Jérôme, Eymard, Robert, Gallouët, Thierry, Guichard, Cindy, Herbin, Raphaèle
Lenguaje:eng
Publicado: Springer 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-79042-8
http://cds.cern.ch/record/2633932
_version_ 1780959664773529600
author Droniou, Jérôme
Eymard, Robert
Gallouët, Thierry
Guichard, Cindy
Herbin, Raphaèle
author_facet Droniou, Jérôme
Eymard, Robert
Gallouët, Thierry
Guichard, Cindy
Herbin, Raphaèle
author_sort Droniou, Jérôme
collection CERN
description This monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray–Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" the="" core="" properties="" and="" analytical="" tools="" required="" to="" work="" within="" gdm="" are="" stressed,="" it="" is="" shown="" that="" scheme="" convergence="" can="" often="" be="" established="" by="" verifying="" a="" small="" number="" of="" properties.="" scope="" some="" featured="" techniques="" results,="" such="" as="" time-space="" compactness="" theorems="" (discrete="" aubin–simon,="" discontinuous="" ascoli–arzela),="" goes="" beyond="" gdm,="" making="" them="" potentially="" applicable="" numerical="" schemes="" not="" (yet)="" known="" fit="" into="" this="" framework.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" this="" monograph="" is="" intended="" for="" graduate="" students,="" researchers="" and="" experts="" in="" the="" field="" of="" numerical="" analysis="" partial="" differential="" equations.
id cern-2633932
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
publisher Springer
record_format invenio
spelling cern-26339322021-04-21T18:44:55Zdoi:10.1007/978-3-319-79042-8http://cds.cern.ch/record/2633932engDroniou, JérômeEymard, RobertGallouët, ThierryGuichard, CindyHerbin, RaphaèleThe gradient discretisation methodMathematical Physics and MathematicsThis monograph presents the Gradient Discretisation Method (GDM), which is a unified convergence analysis framework for numerical methods for elliptic and parabolic partial differential equations. The results obtained by the GDM cover both stationary and transient models; error estimates are provided for linear (and some non-linear) equations, and convergence is established for a wide range of fully non-linear models (e.g. Leray–Lions equations and degenerate parabolic equations such as the Stefan or Richards models). The GDM applies to a diverse range of methods, both classical (conforming, non-conforming, mixed finite elements, discontinuous Galerkin) and modern (mimetic finite differences, hybrid and mixed finite volume, MPFA-O finite volume), some of which can be built on very general meshes.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" the="" core="" properties="" and="" analytical="" tools="" required="" to="" work="" within="" gdm="" are="" stressed,="" it="" is="" shown="" that="" scheme="" convergence="" can="" often="" be="" established="" by="" verifying="" a="" small="" number="" of="" properties.="" scope="" some="" featured="" techniques="" results,="" such="" as="" time-space="" compactness="" theorems="" (discrete="" aubin–simon,="" discontinuous="" ascoli–arzela),="" goes="" beyond="" gdm,="" making="" them="" potentially="" applicable="" numerical="" schemes="" not="" (yet)="" known="" fit="" into="" this="" framework.<span style="font-family:" ms="" mincho";mso-bidi-font-family:="" this="" monograph="" is="" intended="" for="" graduate="" students,="" researchers="" and="" experts="" in="" the="" field="" of="" numerical="" analysis="" partial="" differential="" equations.Springeroai:cds.cern.ch:26339322018
spellingShingle Mathematical Physics and Mathematics
Droniou, Jérôme
Eymard, Robert
Gallouët, Thierry
Guichard, Cindy
Herbin, Raphaèle
The gradient discretisation method
title The gradient discretisation method
title_full The gradient discretisation method
title_fullStr The gradient discretisation method
title_full_unstemmed The gradient discretisation method
title_short The gradient discretisation method
title_sort gradient discretisation method
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-319-79042-8
http://cds.cern.ch/record/2633932
work_keys_str_mv AT dronioujerome thegradientdiscretisationmethod
AT eymardrobert thegradientdiscretisationmethod
AT gallouetthierry thegradientdiscretisationmethod
AT guichardcindy thegradientdiscretisationmethod
AT herbinraphaele thegradientdiscretisationmethod
AT dronioujerome gradientdiscretisationmethod
AT eymardrobert gradientdiscretisationmethod
AT gallouetthierry gradientdiscretisationmethod
AT guichardcindy gradientdiscretisationmethod
AT herbinraphaele gradientdiscretisationmethod