Cargando…
The Sudakov radiator for jet observables and the soft physical coupling
We present a procedure to calculate the Sudakov radiator for a generic recursive infrared and collinear (rIRC) safe observable whose distribution is characterised by two widely separated momentum scales. We give closed formulae for the radiator at next-to-next-to-leading-logarithmic (NNLL) accuracy,...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP01(2019)083 http://cds.cern.ch/record/2634357 |
_version_ | 1780959697929502720 |
---|---|
author | Banfi, Andrea El-Menoufi, Basem Kamal Monni, Pier Francesco |
author_facet | Banfi, Andrea El-Menoufi, Basem Kamal Monni, Pier Francesco |
author_sort | Banfi, Andrea |
collection | CERN |
description | We present a procedure to calculate the Sudakov radiator for a generic recursive infrared and collinear (rIRC) safe observable whose distribution is characterised by two widely separated momentum scales. We give closed formulae for the radiator at next-to-next-to-leading-logarithmic (NNLL) accuracy, which completes the general NNLL resummation for this class of observables in the ARES method for processes with two emitters at the Born level. As a byproduct, we define a physical coupling in the soft limit, and we provide an explicit expression for its relation to the $ \overline{\mathrm{MS}} $ coupling up to $ \mathcal{O}\left({\alpha}_s^3\right) $ . This physical coupling constitutes one of the ingredients for a NNLL accurate parton shower algorithm. As an application we obtain analytic NNLL results, of which several are new, for all angularities τ$_{x}$ defined with respect to both the thrust axis and the winner-take-all axis, and for the moments of energy-energy correlation FC$_{x}$ in e$^{+}$e$^{−}$ annihilation. For the latter observables we find that, for some values of x, an accurate prediction of the peak of the differential distribution requires a simultaneous resummation of the logarithmic terms originating from the two-jet limit and at the Sudakov shoulder. |
id | cern-2634357 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
record_format | invenio |
spelling | cern-26343572021-11-12T20:24:51Zdoi:10.1007/JHEP01(2019)083http://cds.cern.ch/record/2634357engBanfi, AndreaEl-Menoufi, Basem KamalMonni, Pier FrancescoThe Sudakov radiator for jet observables and the soft physical couplinghep-phParticle Physics - PhenomenologyWe present a procedure to calculate the Sudakov radiator for a generic recursive infrared and collinear (rIRC) safe observable whose distribution is characterised by two widely separated momentum scales. We give closed formulae for the radiator at next-to-next-to-leading-logarithmic (NNLL) accuracy, which completes the general NNLL resummation for this class of observables in the ARES method for processes with two emitters at the Born level. As a byproduct, we define a physical coupling in the soft limit, and we provide an explicit expression for its relation to the $ \overline{\mathrm{MS}} $ coupling up to $ \mathcal{O}\left({\alpha}_s^3\right) $ . This physical coupling constitutes one of the ingredients for a NNLL accurate parton shower algorithm. As an application we obtain analytic NNLL results, of which several are new, for all angularities τ$_{x}$ defined with respect to both the thrust axis and the winner-take-all axis, and for the moments of energy-energy correlation FC$_{x}$ in e$^{+}$e$^{−}$ annihilation. For the latter observables we find that, for some values of x, an accurate prediction of the peak of the differential distribution requires a simultaneous resummation of the logarithmic terms originating from the two-jet limit and at the Sudakov shoulder.We present a procedure to calculate the Sudakov radiator for a generic recursive infrared and collinear (rIRC) safe observable in two-scale problems. We give closed formulae for the radiator at next-to-next-to-leading-logarithmic (NNLL) accuracy, which completes the general NNLL resummation for this class of observables in the {\tt ARES} method for processes with two emitters at the Born level. As a byproduct, we define a physical coupling in the soft limit, and we provide an explicit expression for its relation to the $\overline{\rm MS}$ coupling up to ${\cal O}(\alpha_s^3)$. This physical coupling constitutes one of the ingredients for a NNLL accurate parton shower algorithm. As an application we obtain analytic NNLL results, of which several are new, for all angularities $\tau_x$ defined with respect to both the thrust axis and the winner-take-all axis, and for the moments of energy-energy correlation $FC_x$ in $e^+e^-$ annihilation. For the latter observables we find that, for some values of $x$, an accurate prediction of the peak of the differential distribution requires a simultaneous resummation of the logarithmic terms originating from the two-jet limit and at the Sudakov shoulder.arXiv:1807.11487oai:cds.cern.ch:26343572018-07-30 |
spellingShingle | hep-ph Particle Physics - Phenomenology Banfi, Andrea El-Menoufi, Basem Kamal Monni, Pier Francesco The Sudakov radiator for jet observables and the soft physical coupling |
title | The Sudakov radiator for jet observables and the soft physical coupling |
title_full | The Sudakov radiator for jet observables and the soft physical coupling |
title_fullStr | The Sudakov radiator for jet observables and the soft physical coupling |
title_full_unstemmed | The Sudakov radiator for jet observables and the soft physical coupling |
title_short | The Sudakov radiator for jet observables and the soft physical coupling |
title_sort | sudakov radiator for jet observables and the soft physical coupling |
topic | hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1007/JHEP01(2019)083 http://cds.cern.ch/record/2634357 |
work_keys_str_mv | AT banfiandrea thesudakovradiatorforjetobservablesandthesoftphysicalcoupling AT elmenoufibasemkamal thesudakovradiatorforjetobservablesandthesoftphysicalcoupling AT monnipierfrancesco thesudakovradiatorforjetobservablesandthesoftphysicalcoupling AT banfiandrea sudakovradiatorforjetobservablesandthesoftphysicalcoupling AT elmenoufibasemkamal sudakovradiatorforjetobservablesandthesoftphysicalcoupling AT monnipierfrancesco sudakovradiatorforjetobservablesandthesoftphysicalcoupling |