Cargando…
Deep reinforcement learning hands-on: apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more
Autor principal: | Lapan, Maxim |
---|---|
Lenguaje: | eng |
Publicado: |
Packt Publishing
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2634441 |
Ejemplares similares
-
Deep Reinforcement Learning Hands-On
por: Lapan, Maxim
Publicado: (2020) -
Pytorch deep learning hands-on: apply modern AI techniques with CNNS, RNNS, GANs, reinforcement learning, and more
por: Thomas, Sherin, et al.
Publicado: (2019) -
Advanced deep learning with Keras: apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more
por: Atienza, Rowel
Publicado: (2018) -
Hands-on reinforcement learning with Python: master reinforcement and deep reinforcement learning using OpenAI Gym and TensorFlow
por: Ravichandiran, Sudharsan
Publicado: (2018) -
Hands-on deep learning with Go: a practical guide to building and implementing neural network models using Go
por: Seneque, Gareth, et al.
Publicado: (2019)