Cargando…
Machine learning at CERN: ATLAS, LHCb, and more
Machine learning is of increasing importance to high energy physics as dataset sizes and data rates grow, while sensitivity to standard model and new physics signals are continually pushed to new extremes. Machine learning has proven to be advantageous in many contexts, and applications now span are...
Autor principal: | Schramm, Steven |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2634678 |
Ejemplares similares
-
Machine learning at CERN: ATLAS, LHCb, and more
por: Schramm, Steven
Publicado: (2018) -
Machine learning at CERN: ATLAS, LHCb, and more
por: Schramm, Steven
Publicado: (2019) -
Machine Learning @ ATLAS
por: Golling, Tobias
Publicado: (2019) -
Machine Learning in ATLAS
por: Whiteson, Daniel
Publicado: (2023) -
Machine learning and parallelism in the reconstruction of LHCb and its upgrade
por: De Cian, Michel
Publicado: (2016)