Cargando…
Topological Susceptibility of the 2d O(3) Model under Gradient Flow
The 2D O(3) model is widely used as a toy model for ferromagnetism and for quantum chromodynamics. With the latter it shares—among other basic aspects—the property that the continuum functional integral splits into topological sectors. Topology can also be defined in its lattice regularized version,...
Autores principales: | Bietenholz, Wolfgang, de Forcrand, Philippe, Gerber, Urs, Mejía-Díaz, Héctor, Sandoval, Ilya O. |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.98.114501 http://cds.cern.ch/record/2636312 |
Ejemplares similares
-
Topology in the 2d Heisenberg Model under Gradient Flow
por: Sandoval, Ilya O., et al.
Publicado: (2017) -
Topological Susceptibility under Gradient Flow
por: Mejía-Díaz, Héctor, et al.
Publicado: (2018) -
Efficient computations of continuous action densities of states for lattice models
por: Lucini, Biagio, et al.
Publicado: (2022) -
An introduction to integrable techniques in one-dimensional quantum systems
por: Franchini, Fabio
Publicado: (2016) -
General Properties of Multiscalar RG Flows in $d=4-\varepsilon$
por: Rychkov, Slava, et al.
Publicado: (2018)