Cargando…
Attenuation effect and neutrino oscillation tomography
The attenuation effect is the effect of weakening contributions to the oscillation signal from remote structures of the matter density profile. The effect is a consequence of integration over the neutrino energy within the energy resolution interval. Structures of a density profile situated at dista...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.96.083009 http://cds.cern.ch/record/2638201 |
_version_ | 1780959967323357184 |
---|---|
author | Ioannisian, A.N. Smirnov, A. Yu. |
author_facet | Ioannisian, A.N. Smirnov, A. Yu. |
author_sort | Ioannisian, A.N. |
collection | CERN |
description | The attenuation effect is the effect of weakening contributions to the oscillation signal from remote structures of the matter density profile. The effect is a consequence of integration over the neutrino energy within the energy resolution interval. Structures of a density profile situated at distances larger than the attenuation length, λatt, are not “seen” at the level ε≡2EV/Δm2, where V is the matter potential. We show that the origins of attenuation are (i) the averaging of oscillations in certain layer(s) of matter, (ii) the smallness of the matter effect: ε≪1, and (iii) the specific initial and final states on neutrinos. We elaborate on the graphic description of the attenuation that allows us to compute explicitly the effects in the ε2 order for various density profiles and oscillation channels. The attenuation in the case of partial averaging is described. The effect is crucial for the interpretation of oscillation data and for the oscillation tomography of the Earth with low energy (solar, supernova, atmospheric, etc.) neutrinos. |
id | cern-2638201 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | cern-26382012021-05-03T20:01:43Zdoi:10.1103/PhysRevD.96.083009http://cds.cern.ch/record/2638201engIoannisian, A.N.Smirnov, A. Yu.Attenuation effect and neutrino oscillation tomographyhep-exParticle Physics - Experimenthep-phParticle Physics - PhenomenologyThe attenuation effect is the effect of weakening contributions to the oscillation signal from remote structures of the matter density profile. The effect is a consequence of integration over the neutrino energy within the energy resolution interval. Structures of a density profile situated at distances larger than the attenuation length, λatt, are not “seen” at the level ε≡2EV/Δm2, where V is the matter potential. We show that the origins of attenuation are (i) the averaging of oscillations in certain layer(s) of matter, (ii) the smallness of the matter effect: ε≪1, and (iii) the specific initial and final states on neutrinos. We elaborate on the graphic description of the attenuation that allows us to compute explicitly the effects in the ε2 order for various density profiles and oscillation channels. The attenuation in the case of partial averaging is described. The effect is crucial for the interpretation of oscillation data and for the oscillation tomography of the Earth with low energy (solar, supernova, atmospheric, etc.) neutrinos.Attenuation effect is the effect of weakening of contributions to the oscillation signal from remote structures of matter density profile. The effect is a consequence of integration over the neutrino energy within the energy resolution interval. Structures of a density profile situated at distances larger than the attenuation length, $\lambda_{att}$, are not "seen". We show that the origins of attenuation are (i) averaging of oscillations in certain layer(s) of matter, (ii) smallness of matter effect: $\epsilon \equiv 2EV/\Delta m^2 \ll 1$, where $V$ is the matter potential, and (iii) specific initial and final states on neutrinos. We elaborate on the graphic description of the attenuation which allows us to compute explicitly the effects in the $\epsilon^2$ order for various density profiles and oscillation channels. The attenuation in the case of partial averaging is described. The effect is crucial for interpretation of oscillation data and for the oscillation tomography of the Earth with low energy (solar, supernova, atmospheric, {\it etc.}) neutrinos.arXiv:1705.04252CERN-TH-2017-079oai:cds.cern.ch:26382012017-05-11 |
spellingShingle | hep-ex Particle Physics - Experiment hep-ph Particle Physics - Phenomenology Ioannisian, A.N. Smirnov, A. Yu. Attenuation effect and neutrino oscillation tomography |
title | Attenuation effect and neutrino oscillation tomography |
title_full | Attenuation effect and neutrino oscillation tomography |
title_fullStr | Attenuation effect and neutrino oscillation tomography |
title_full_unstemmed | Attenuation effect and neutrino oscillation tomography |
title_short | Attenuation effect and neutrino oscillation tomography |
title_sort | attenuation effect and neutrino oscillation tomography |
topic | hep-ex Particle Physics - Experiment hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1103/PhysRevD.96.083009 http://cds.cern.ch/record/2638201 |
work_keys_str_mv | AT ioannisianan attenuationeffectandneutrinooscillationtomography AT smirnovayu attenuationeffectandneutrinooscillationtomography |