Cargando…
End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
This paper describes the construction of novel end-to-end image-based classifiers that directly leverage low-level simulated detector data to discriminate signal and background processes in proton–proton collision events at the Large Hadron Collider at CERN. To better understand what end-to-end clas...
Autores principales: | Andrews, M., Paulini, M., Gleyzer, S., Poczos, B. |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-020-00038-8 http://cds.cern.ch/record/2641646 |
Ejemplares similares
-
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
por: Andrews, M., et al.
Publicado: (2019) -
End-to-End Jet Classification of Boosted Top Quarks with CMS Open Data
por: Andrews, Michael, et al.
Publicado: (2021) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier
por: Grönroos, Sonja, et al.
Publicado: (2023)