Cargando…
Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces
In this paper, the authors provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic 1976 paper to more recent results of Hersonsky...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2642033 |
_version_ | 1780960270066122752 |
---|---|
author | Fishman, Lior Simmons, David Urbański, Mariusz |
author_facet | Fishman, Lior Simmons, David Urbański, Mariusz |
author_sort | Fishman, Lior |
collection | CERN |
description | In this paper, the authors provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic 1976 paper to more recent results of Hersonsky and Paulin (2002, 2004, 2007). The authors consider concrete examples of situations which have not been considered before. These include geometrically infinite Kleinian groups, geometrically finite Kleinian groups where the approximating point is not a fixed point of any element of the group, and groups acting on infinite-dimensional hyperbolic space. Moreover, in addition to providing much greater generality than any prior work of which the authors are aware, the results also give new insight into the nature of the connection between Diophantine approximation and the geometry of the limit set within which it takes place. Two results are also contained here which are purely geometric: a generalization of a theorem of Bishop and Jones (1997) to Gromov hyperbolic metric spaces, and a proof that the uniformly radial limit set of a group acting on a proper geodesic Gromov hyperbolic metric space has zero Patterson-Sullivan measure unless the group is quasiconvex-cocompact. The latter is an application of a Diophantine theorem. |
id | cern-2642033 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-26420332021-04-21T18:41:07Zhttp://cds.cern.ch/record/2642033engFishman, LiorSimmons, DavidUrbański, MariuszDiophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spacesMathematical Physics and MathematicsIn this paper, the authors provide a complete theory of Diophantine approximation in the limit set of a group acting on a Gromov hyperbolic metric space. This summarizes and completes a long line of results by many authors, from Patterson's classic 1976 paper to more recent results of Hersonsky and Paulin (2002, 2004, 2007). The authors consider concrete examples of situations which have not been considered before. These include geometrically infinite Kleinian groups, geometrically finite Kleinian groups where the approximating point is not a fixed point of any element of the group, and groups acting on infinite-dimensional hyperbolic space. Moreover, in addition to providing much greater generality than any prior work of which the authors are aware, the results also give new insight into the nature of the connection between Diophantine approximation and the geometry of the limit set within which it takes place. Two results are also contained here which are purely geometric: a generalization of a theorem of Bishop and Jones (1997) to Gromov hyperbolic metric spaces, and a proof that the uniformly radial limit set of a group acting on a proper geodesic Gromov hyperbolic metric space has zero Patterson-Sullivan measure unless the group is quasiconvex-cocompact. The latter is an application of a Diophantine theorem.American Mathematical Societyoai:cds.cern.ch:26420332018 |
spellingShingle | Mathematical Physics and Mathematics Fishman, Lior Simmons, David Urbański, Mariusz Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces |
title | Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces |
title_full | Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces |
title_fullStr | Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces |
title_full_unstemmed | Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces |
title_short | Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces |
title_sort | diophantine approximation and the geometry of limit sets in gromov hyperbolic metric spaces |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2642033 |
work_keys_str_mv | AT fishmanlior diophantineapproximationandthegeometryoflimitsetsingromovhyperbolicmetricspaces AT simmonsdavid diophantineapproximationandthegeometryoflimitsetsingromovhyperbolicmetricspaces AT urbanskimariusz diophantineapproximationandthegeometryoflimitsetsingromovhyperbolicmetricspaces |