Cargando…
Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC
There has been considerable recent activity applying deep convolutional neural nets (CNNs) to data from particle physics experiments. Current approaches on ATLAS/CMS have largely focussed on a subset of the calorimeter, and for identifying objects or particular particle types. We explore approaches...
Autores principales: | Bhimji, Wahid, Farrell, Steven Andrew, Kurth, Thorsten, Paganini, Michela, Prabhat, Racah, Evan |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1085/4/042034 http://cds.cern.ch/record/2642191 |
Ejemplares similares
-
Micro-CernVM: Slashing the Cost of Building and Deploying Virtual Machines
por: Blomer, J., et al.
Publicado: (2014) -
Using Big Data Technologies for HEP Analysis
por: Cremonesi, Matteo, et al.
Publicado: (2019) -
GRID Storage Optimization in Transparent and User-Friendly Way for LHCb Datasets
por: Hushchyn, Mikhail, et al.
Publicado: (2017) -
Big Data in HEP: A comprehensive use case study
por: Gutsche, Oliver, et al.
Publicado: (2017) -
Provenance tracking in the LHCb software
por: Trisovic, Ana, et al.
Publicado: (2020)