Cargando…
Asymmetric Dark Stars and Neutron Star Stability
We consider gravitationally bound states of asymmetric dark matter (ADM stars), and the impact of ADM capture on the stability of neutron stars. We derive and interpret the equation of state for ADM with both attractive and repulsive interactions, and solve the Tolman-Oppenheimer-Volkoff equations t...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.99.083008 http://cds.cern.ch/record/2643824 |
_version_ | 1780960333231292416 |
---|---|
author | Gresham, Moira I. Zurek, Kathryn M. |
author_facet | Gresham, Moira I. Zurek, Kathryn M. |
author_sort | Gresham, Moira I. |
collection | CERN |
description | We consider gravitationally bound states of asymmetric dark matter (ADM stars), and the impact of ADM capture on the stability of neutron stars. We derive and interpret the equation of state for ADM with both attractive and repulsive interactions, and solve the Tolman-Oppenheimer-Volkoff equations to find equilibrium sequences and maximum masses of ADM stars. Gravitational wave searches can utilize our solutions to model exotic compact objects (ECOs). Our results for attractive interactions differ substantially from those in the literature, where fermionic ADM with attractive self-interactions was employed to destabilize neutron stars more effectively than noninteracting fermionic ADM. By contrast, we argue that fermionic ADM with an attractive force is no more effective in destabilizing neutron stars than fermionic ADM with no self-interactions. |
id | cern-2643824 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
record_format | invenio |
spelling | cern-26438242023-10-04T06:00:44Zdoi:10.1103/PhysRevD.99.083008http://cds.cern.ch/record/2643824engGresham, Moira I.Zurek, Kathryn M.Asymmetric Dark Stars and Neutron Star Stabilityhep-phParticle Physics - Phenomenologygr-qcGeneral Relativity and Cosmologyastro-ph.COAstrophysics and AstronomyWe consider gravitationally bound states of asymmetric dark matter (ADM stars), and the impact of ADM capture on the stability of neutron stars. We derive and interpret the equation of state for ADM with both attractive and repulsive interactions, and solve the Tolman-Oppenheimer-Volkoff equations to find equilibrium sequences and maximum masses of ADM stars. Gravitational wave searches can utilize our solutions to model exotic compact objects (ECOs). Our results for attractive interactions differ substantially from those in the literature, where fermionic ADM with attractive self-interactions was employed to destabilize neutron stars more effectively than noninteracting fermionic ADM. By contrast, we argue that fermionic ADM with an attractive force is no more effective in destabilizing neutron stars than fermionic ADM with no self-interactions.We consider gravitationally bound states of asymmetric dark matter (ADM stars), and the impact of ADM capture on the stability of neutron stars. We derive and interpret the equation of state for ADM with both attractive and repulsive interactions, and solve the Tolman-Oppenheimer-Volkoff equations to find equilibrium sequences and maximum masses of ADM stars. Gravitational wave searches can utilize our solutions to model exotic compact objects (ECOs). Our results for attractive interactions differ substantially from those in the literature, where fermionic ADM with attractive self-interactions was employed to destabilize neutron stars more effectively than non-interacting fermionic ADM. By contrast, we argue that fermionic ADM with an attractive force is no more effective in destabilizing neutron stars than fermionic ADM with no self-interactions.arXiv:1809.08254oai:cds.cern.ch:26438242018-09-21 |
spellingShingle | hep-ph Particle Physics - Phenomenology gr-qc General Relativity and Cosmology astro-ph.CO Astrophysics and Astronomy Gresham, Moira I. Zurek, Kathryn M. Asymmetric Dark Stars and Neutron Star Stability |
title | Asymmetric Dark Stars and Neutron Star Stability |
title_full | Asymmetric Dark Stars and Neutron Star Stability |
title_fullStr | Asymmetric Dark Stars and Neutron Star Stability |
title_full_unstemmed | Asymmetric Dark Stars and Neutron Star Stability |
title_short | Asymmetric Dark Stars and Neutron Star Stability |
title_sort | asymmetric dark stars and neutron star stability |
topic | hep-ph Particle Physics - Phenomenology gr-qc General Relativity and Cosmology astro-ph.CO Astrophysics and Astronomy |
url | https://dx.doi.org/10.1103/PhysRevD.99.083008 http://cds.cern.ch/record/2643824 |
work_keys_str_mv | AT greshammoirai asymmetricdarkstarsandneutronstarstability AT zurekkathrynm asymmetricdarkstarsandneutronstarstability |