Cargando…

Elliptic Feynman integrals and pure functions

We propose a variant of elliptic multiple polylogarithms that have at most logarithmic singularities in all variables and satisfy a differential equation without homogeneous term. We investigate several non-trivial elliptic two-loop Feynman integrals with up to three external legs and express them i...

Descripción completa

Detalles Bibliográficos
Autores principales: Broedel, Johannes, Duhr, Claude, Dulat, Falko, Penante, Brenda, Tancredi, Lorenzo
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP01(2019)023
http://cds.cern.ch/record/2643825
_version_ 1780960333442056192
author Broedel, Johannes
Duhr, Claude
Dulat, Falko
Penante, Brenda
Tancredi, Lorenzo
author_facet Broedel, Johannes
Duhr, Claude
Dulat, Falko
Penante, Brenda
Tancredi, Lorenzo
author_sort Broedel, Johannes
collection CERN
description We propose a variant of elliptic multiple polylogarithms that have at most logarithmic singularities in all variables and satisfy a differential equation without homogeneous term. We investigate several non-trivial elliptic two-loop Feynman integrals with up to three external legs and express them in terms of our functions. We observe that in all cases they evaluate to pure combinations of elliptic multiple polylogarithms of uniform weight. This is the first time that a notion of uniform weight is observed in the context of Feynman integrals that evaluate to elliptic polylogarithms.
id cern-2643825
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
record_format invenio
spelling cern-26438252023-10-04T06:04:16Zdoi:10.1007/JHEP01(2019)023http://cds.cern.ch/record/2643825engBroedel, JohannesDuhr, ClaudeDulat, FalkoPenante, BrendaTancredi, LorenzoElliptic Feynman integrals and pure functionshep-thParticle Physics - TheoryWe propose a variant of elliptic multiple polylogarithms that have at most logarithmic singularities in all variables and satisfy a differential equation without homogeneous term. We investigate several non-trivial elliptic two-loop Feynman integrals with up to three external legs and express them in terms of our functions. We observe that in all cases they evaluate to pure combinations of elliptic multiple polylogarithms of uniform weight. This is the first time that a notion of uniform weight is observed in the context of Feynman integrals that evaluate to elliptic polylogarithms.arXiv:1809.10698CP3-18-58CERN-TH-2018-211HU-Mathematik-2018-09HU-EP-18/29SLAC-PUB-17336oai:cds.cern.ch:26438252018-09-27
spellingShingle hep-th
Particle Physics - Theory
Broedel, Johannes
Duhr, Claude
Dulat, Falko
Penante, Brenda
Tancredi, Lorenzo
Elliptic Feynman integrals and pure functions
title Elliptic Feynman integrals and pure functions
title_full Elliptic Feynman integrals and pure functions
title_fullStr Elliptic Feynman integrals and pure functions
title_full_unstemmed Elliptic Feynman integrals and pure functions
title_short Elliptic Feynman integrals and pure functions
title_sort elliptic feynman integrals and pure functions
topic hep-th
Particle Physics - Theory
url https://dx.doi.org/10.1007/JHEP01(2019)023
http://cds.cern.ch/record/2643825
work_keys_str_mv AT broedeljohannes ellipticfeynmanintegralsandpurefunctions
AT duhrclaude ellipticfeynmanintegralsandpurefunctions
AT dulatfalko ellipticfeynmanintegralsandpurefunctions
AT penantebrenda ellipticfeynmanintegralsandpurefunctions
AT tancredilorenzo ellipticfeynmanintegralsandpurefunctions