Cargando…
Learning New Physics from a machine
<!--HTML-->We propose using neural networks to detect data departures from a given reference model, with no prior bias on the nature of the new physics responsible for the discrepancy. The model-independent nature of our approach, and its ability to deal with rare signals such as those expecte...
Autor principal: | Wulzer, Andrea |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2644193 |
Ejemplares similares
-
Machine learning in jet physics
por: Narayana Varma, Sreedevi
Publicado: (2018) -
Guiding New Physics Searches with Unsupervised Learning
por: De Simone, Andrea
Publicado: (2018) -
What is the machine learning.
por: Ostdiek, Bryan
Publicado: (2018) -
Particle identification at LHCb: new calibration techniques and machine learning classification algorithms
por: Lucio Martinez, Miriam
Publicado: (2018) -
Machine learning as an instrument for data unfolding
por: Glazov, Alexander
Publicado: (2018)