Cargando…
Laser stimulated deexcitation of Rydberg antihydrogen atoms
Antihydrogen atoms are routinely formed at CERN in a broad range of Rydberg states. Ground-state antiatoms, those useful for precision measurements, are eventually produced through spontaneous decay. However given the long lifetime of Rydberg states the number of ground-state antihydrogen atoms usab...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevA.99.013418 https://dx.doi.org/10.1103/PhysRevA.101.019904 http://cds.cern.ch/record/2645301 |
Sumario: | Antihydrogen atoms are routinely formed at CERN in a broad range of Rydberg states. Ground-state antiatoms, those useful for precision measurements, are eventually produced through spontaneous decay. However given the long lifetime of Rydberg states the number of ground-state antihydrogen atoms usable is small, in particular for experiments relying on the production of a beam of antihydrogen atoms. Therefore, it is of high interest to efficiently stimulate the decay in order to retain a higher fraction of ground-state atoms for measurements. We propose a method that optimally mixes the high angular momentum states with low ones enabling us to stimulate, using a broadband frequency laser, the deexcitation toward low-lying states, which then spontaneously decay to the ground state. We evaluate the method in realistic antihydrogen experimental conditions. For instance, starting with an initial distribution of atoms within the n=20–30 manifolds, as formed through the charge exchange mechanism, we show that more than 80% of antihydrogen atoms will be deexcited to the ground state within 100 ns using a laser producing 2 J at 828 nm. |
---|