Cargando…
Numerical optimization for Artificial Retina Algorithm
High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal ex...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/898/3/032046 http://cds.cern.ch/record/2645858 |
_version_ | 1780960454418366464 |
---|---|
author | Borisyak, Maxim Ustyuzhanin, Andrey Derkach, Denis Belous, Mikhail |
author_facet | Borisyak, Maxim Ustyuzhanin, Andrey Derkach, Denis Belous, Mikhail |
author_sort | Borisyak, Maxim |
collection | CERN |
description | High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal examples (interesting decays) and a significant amount of noise (uninteresting examples). This work describes a modification of the Artificial Retina algorithm for fast track finding: numerical optimization methods were adopted for fast local track search. This approach allows for considerable reduction of the total computational time per event. Test results on simplified simulated model of LHCb VELO (VErtex LOcator) detector are presented. Also this approach is well-suited for implementation of paralleled computations as GPGPU which look very attractive in the context of upcoming detector upgrades. |
id | cern-2645858 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | cern-26458582023-03-14T19:19:49Zdoi:10.1088/1742-6596/898/3/032046doi:10.1088/1742-6596/898/3/032046http://cds.cern.ch/record/2645858engBorisyak, MaximUstyuzhanin, AndreyDerkach, DenisBelous, MikhailNumerical optimization for Artificial Retina Algorithmphysics.data-anOther Fields of Physicshep-exParticle Physics - Experimentcs.CVComputing and ComputersHigh-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal examples (interesting decays) and a significant amount of noise (uninteresting examples). This work describes a modification of the Artificial Retina algorithm for fast track finding: numerical optimization methods were adopted for fast local track search. This approach allows for considerable reduction of the total computational time per event. Test results on simplified simulated model of LHCb VELO (VErtex LOcator) detector are presented. Also this approach is well-suited for implementation of paralleled computations as GPGPU which look very attractive in the context of upcoming detector upgrades.arXiv:1709.08610oai:cds.cern.ch:26458582017-09-25 |
spellingShingle | physics.data-an Other Fields of Physics hep-ex Particle Physics - Experiment cs.CV Computing and Computers Borisyak, Maxim Ustyuzhanin, Andrey Derkach, Denis Belous, Mikhail Numerical optimization for Artificial Retina Algorithm |
title | Numerical optimization for Artificial Retina Algorithm |
title_full | Numerical optimization for Artificial Retina Algorithm |
title_fullStr | Numerical optimization for Artificial Retina Algorithm |
title_full_unstemmed | Numerical optimization for Artificial Retina Algorithm |
title_short | Numerical optimization for Artificial Retina Algorithm |
title_sort | numerical optimization for artificial retina algorithm |
topic | physics.data-an Other Fields of Physics hep-ex Particle Physics - Experiment cs.CV Computing and Computers |
url | https://dx.doi.org/10.1088/1742-6596/898/3/032046 https://dx.doi.org/10.1088/1742-6596/898/3/032046 http://cds.cern.ch/record/2645858 |
work_keys_str_mv | AT borisyakmaxim numericaloptimizationforartificialretinaalgorithm AT ustyuzhaninandrey numericaloptimizationforartificialretinaalgorithm AT derkachdenis numericaloptimizationforartificialretinaalgorithm AT belousmikhail numericaloptimizationforartificialretinaalgorithm |