Cargando…
Numerical optimization for Artificial Retina Algorithm
High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal ex...
Autores principales: | Borisyak, Maxim, Ustyuzhanin, Andrey, Derkach, Denis, Belous, Mikhail |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/898/3/032046 http://cds.cern.ch/record/2645858 |
Ejemplares similares
-
Machine Learning methods for simulating particle response in the Zero Degree Calorimeter at the ALICE experiment, CERN
por: Dubiński, Jan, et al.
Publicado: (2023) -
Variational Dropout Sparsification for Particle Identification speed-up
por: Ryzhikov, Artem, et al.
Publicado: (2020) -
End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
por: Andrews, M., et al.
Publicado: (2018) -
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
por: Andrews, M., et al.
Publicado: (2019) -
End-to-End Jet Classification of Boosted Top Quarks with CMS Open Data
por: Andrews, Michael, et al.
Publicado: (2021)