Cargando…
Pileup mitigation at the Large Hadron Collider with Graph Neural Networks
At the Large Hadron Collider, the high transverse-momentum events studied by experimental collaborations occur in coincidence with parasitic low transverse-momentum collisions, usually referred to as pileup. Pileup mitigation is a key ingredient of the online and offline event reconstruction as pile...
Autores principales: | Arjona Martínez, J., Cerri, Olmo, Pierini, Maurizio, Spiropulu, Maria, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjp/i2019-12710-3 http://cds.cern.ch/record/2646050 |
Ejemplares similares
-
Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description
por: Arjona Martínez, Jesús, et al.
Publicado: (2019) -
Variational Autoencoders for New Physics Mining at the Large Hadron Collider
por: Cerri, Olmo, et al.
Publicado: (2018) -
Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
por: Moreno, Eric A., et al.
Publicado: (2019) -
JEDI-net: a jet identification algorithm based on interaction networks
por: Moreno, Eric A., et al.
Publicado: (2019) -
Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark
por: Knapp, Oliver, et al.
Publicado: (2020)