Cargando…
Almost global solutions of capillary-gravity water waves equations on the circle
The goal of this monograph is to prove that any solution of the Cauchy problem for the capillary-gravity water waves equations, in one space dimension, with periodic, even in space, small and smooth enough initial data, is almost globally defined in time on Sobolev spaces, provided the gravity-capil...
Autores principales: | Berti, Massimiliano, Delort, Jean-Marc |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-99486-4 http://cds.cern.ch/record/2647159 |
Ejemplares similares
-
Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations
por: Bourgain, J
Publicado: (1995) -
Almost periodic solutions of impulsive differential equations
por: Stamov, Gani T
Publicado: (2012) -
Quasi-periodic standing wave solutions of gravity-capillary water waves
por: Berti, Massimiliano, et al.
Publicado: (2020) -
Bounded and almost periodic solutions of nonlinear operator differential equations
por: Pankov, A A
Publicado: (1990) -
Almost periodic differential equations
por: Fink, A M
Publicado: (1974)