Cargando…
Opportunities in Machine Learning for Particle Accelerators
Machine learning (ML) is a subfield of artificial intelligence. The term applies broadly to a collection of computational algorithms and techniques that train systems from raw data rather than a priori models. ML techniques are now technologically mature enough to be applied to particle accelerators...
Autores principales: | Edelen, A., Mayes, C., Bowring, D., Ratner, D., Adelmann, A., Ischebeck, R., Snuverink, J., Agapov, I., Kammering, R., Edelen, J., Bazarov, I., Valentino, G., Wenninger, J. |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2650219 |
Ejemplares similares
-
An $ep$ collider based on proton-driven plasma wakefield acceleration
por: Wing, M., et al.
Publicado: (2014) -
Hie-Isolde High Beta Cavity Study and Measurements
por: D'Elia, A., et al.
Publicado: (2009) -
Luminosity Performance Studies of Linear Colliders with Intra-train Feedback Systems
por: Resta-Lopez, J., et al.
Publicado: (2009) -
An alternate design for CLIC main linac wakefield suppression
por: Khan, V.F., et al.
Publicado: (2009) -
X-band crab cavities for the CLIC beam delivery system
por: Burt, G., et al.
Publicado: (2009)