Cargando…
Exploring End-to-end Deep Learning Applications for Event Classification at CMS
An essential part of new physics searches at the Large Hadron Collider (LHC) at CERN involves event classification, or distinguishing potential signal events from those coming from background processes. Current machine learning techniques accomplish this using traditional hand-engineered features li...
Autores principales: | Andrews, Michael Benjamin, Paulini, Manfred, Gleyzer, Sergei, Barnabas Poczos |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201921406031 http://cds.cern.ch/record/2650365 |
Ejemplares similares
-
End-to-end particle and event identification at the Large Hadron Collider with CMS Open Data
por: Alison, John, et al.
Publicado: (2019) -
End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
por: Andrews, M., et al.
Publicado: (2018) -
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
por: Andrews, M., et al.
Publicado: (2019) -
End-to-end Deep Learning Inference in CMS software framework
por: CMS Collaboration
Publicado: (2023) -
End-to-End Jet Classification of Boosted Top Quarks with CMS Open Data
por: Andrews, Michael, et al.
Publicado: (2021)