Cargando…
Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment
The certification of the CMS experiment data as usable for physics analysis is a crucial task to ensure the quality of all physics results published by the collaboration. Currently, the certification conducted by human experts is labor intensive and based on the scrutiny of distributions integrated...
Autores principales: | Pol, Adrian Alan, Azzolini, Virginia, Cerminara, Gianluca, De Guio, Federico, Franzoni, Giovanni, Pierini, Maurizio, Široký, Filip, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201921406008 http://cds.cern.ch/record/2650715 |
Ejemplares similares
-
Deep learning for certification of the quality of the data acquired by the CMS Experiment
por: Alan Pol, Adrian, et al.
Publicado: (2020) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Deep learning for inferring cause of data anomalies
por: Azzolini, V., et al.
Publicado: (2017) -
Improving data quality monitoring via a partnership of technologies and resources between the CMS experiment at CERN and industry
por: Azzolini, Virginia, et al.
Publicado: (2019) -
Source-Agnostic Gravitational-Wave Detection with Recurrent Autoencoders
por: Moreno, Eric A., et al.
Publicado: (2021)