Cargando…
Uncertainty quantification and predictive computational science: a foundation for physical scientists and engineers
This textbook teaches the essential background and skills for understanding and quantifying uncertainties in a computational simulation, and for predicting the behavior of a system under those uncertainties. It addresses a critical knowledge gap in the widespread adoption of simulation in high-conse...
Autor principal: | McClarren, Ryan G |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-99525-0 http://cds.cern.ch/record/2650839 |
Ejemplares similares
Cargando…
Introduction to Scilab: for engineers and scientists
por: Nagar, Sandeep
Publicado: (2017)
por: Nagar, Sandeep
Publicado: (2017)
Ejemplares similares
-
Computational nuclear engineering and radiological science using Python
por: McClarren, Ryan
Publicado: (2017) -
Foundations of computer science
por: Aho, Alfred V, et al.
Publicado: (1992) -
Foundations of computer science
por: Aho, Alfred V, et al.
Publicado: (1995) -
Nonlinear physics with MAPLE for scientists and engineers
por: Enns, Richard H, et al.
Publicado: (1999) -
Data science with Java: practical methods for scientists and engineers
por: Brzustowicz, Michael R
Publicado: (2017)