Cargando…
Variational Autoencoders for New Physics Mining at the Large Hadron Collider
Using variational autoencoders trained on known physics processes, we develop a one-sided threshold test to isolate previously unseen processes as outlier events. Since the autoencoder training does not depend on any specific new physics signature, the proposed procedure doesn’t make specific assump...
Autores principales: | Cerri, Olmo, Nguyen, Thong Q., Pierini, Maurizio, Spiropulu, Maria, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP05(2019)036 http://cds.cern.ch/record/2650952 |
Ejemplares similares
-
Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark
por: Knapp, Oliver, et al.
Publicado: (2020) -
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Pileup mitigation at the Large Hadron Collider with Graph Neural Networks
por: Arjona Martínez, J., et al.
Publicado: (2018) -
Autoencoders for Real-Time SUEP Detection
por: Chhibra, Simranjit Singh, et al.
Publicado: (2023) -
Autoencoders for Semivisible Jet Detection
por: Canelli, Florencia, et al.
Publicado: (2021)