Cargando…
FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | info:eu-repo/semantics/article |
Publicado: |
Eur. Phys. J. Spec. Top.
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjst/e2019-900045-4 http://cds.cern.ch/record/2651299 |
_version_ | 1780960861198745600 |
---|---|
author | Benedikt, Michael Blondel, Alain Brunner, Olivier Capeans Garrido, Mar Cerutti, Francesco Gutleber, Johannes Janot, Patrick Jimenez, Jose Miguel Mertens, Volker Milanese, Attilio Oide, Katsunobu Osborne, John Andrew Otto, Thomas Papaphilippou, Yannis Poole, John Tavian, Laurent Jean Zimmermann, Frank |
author_facet | Benedikt, Michael Blondel, Alain Brunner, Olivier Capeans Garrido, Mar Cerutti, Francesco Gutleber, Johannes Janot, Patrick Jimenez, Jose Miguel Mertens, Volker Milanese, Attilio Oide, Katsunobu Osborne, John Andrew Otto, Thomas Papaphilippou, Yannis Poole, John Tavian, Laurent Jean Zimmermann, Frank |
author_sort | Benedikt, Michael |
collection | CERN |
description | Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. On the other hand, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the domination of matter over antimatter, the evidence for dark matter and the non-zero neutrino masses. Theoretical issues that need to be addressed include the hierarchy problem, the neutrality of the Universe, the stability of the Higgs boson mass upon quantum corrections and the strong CP problem. This report contains the description of a novel research infrastructure based on a highest-luminosity energy frontier electron-positron collider (FCC-ee) to address the open questions of modern physics. It will be a general precision instrument for the continued in-depth exploration of nature at the smallest scales, optimised to measure precisely the properties of the Higgs boson at the per-cent level, the Z and W bosons, the top quark and the Higgs coupling to the Z at the per-mil level. FCC-ee will provide unprecedented sensitivity to signs of new physics appearing either in the form of small deviations from the Standard Model or as rare decay processes. This collider will be implemented in stages, successively spanning the entire energy range from the Z pole over the WW threshold and H production peak to the t"t" ̅ threshold. Most of the infrastructure (e.g. underground structures, surface sites, electrical distribution, cooling & ventilation, RF systems) can be directly re-used for a subsequent highest-energy hadron collider (described in the FCC conceptual design report volume 3), serving the world-wide particle-physics community in a highly synergetic and cost-effective manner throughout the 21st century. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular lepton collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy, highest-luminosity circular lepton collider exists today. The FCC-ee concept comprises a power-saving twin-aperture magnet system, a continuous top-up injection scheme for stable operation and maximum integrated luminosity. Combined with an energy staging scheme, the FCC-ee represents the most efficient and most sustainable route for executing the research required to discover signs of new physics beyond the Standard Model. The step-wise energy increase of the FCC-ee does not require any additional civil engineering activities. Strategic R&D for FCC-ee aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate residual technology-related risks and ensure that industry can benefit from an acceptable economic utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, building the international machine and experiment consortia, developing a territorial implementation plan in agreement with the host-states’ requirements, optimising the disposal of land and underground volumes and preparing the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase. |
format | info:eu-repo/semantics/article |
id | cern-2651299 |
institution | Organización Europea para la Investigación Nuclear |
publishDate | 2018 |
publisher | Eur. Phys. J. Spec. Top. |
record_format | invenio |
spelling | cern-26512992022-08-18T06:52:37Z doi:10.1140/epjst/e2019-900045-4 http://cds.cern.ch/record/2651299 Benedikt, Michael Blondel, Alain Brunner, Olivier Capeans Garrido, Mar Cerutti, Francesco Gutleber, Johannes Janot, Patrick Jimenez, Jose Miguel Mertens, Volker Milanese, Attilio Oide, Katsunobu Osborne, John Andrew Otto, Thomas Papaphilippou, Yannis Poole, John Tavian, Laurent Jean Zimmermann, Frank FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 Accelerators and Storage Rings Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. On the other hand, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the domination of matter over antimatter, the evidence for dark matter and the non-zero neutrino masses. Theoretical issues that need to be addressed include the hierarchy problem, the neutrality of the Universe, the stability of the Higgs boson mass upon quantum corrections and the strong CP problem. This report contains the description of a novel research infrastructure based on a highest-luminosity energy frontier electron-positron collider (FCC-ee) to address the open questions of modern physics. It will be a general precision instrument for the continued in-depth exploration of nature at the smallest scales, optimised to measure precisely the properties of the Higgs boson at the per-cent level, the Z and W bosons, the top quark and the Higgs coupling to the Z at the per-mil level. FCC-ee will provide unprecedented sensitivity to signs of new physics appearing either in the form of small deviations from the Standard Model or as rare decay processes. This collider will be implemented in stages, successively spanning the entire energy range from the Z pole over the WW threshold and H production peak to the t"t" ̅ threshold. Most of the infrastructure (e.g. underground structures, surface sites, electrical distribution, cooling & ventilation, RF systems) can be directly re-used for a subsequent highest-energy hadron collider (described in the FCC conceptual design report volume 3), serving the world-wide particle-physics community in a highly synergetic and cost-effective manner throughout the 21st century. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular lepton collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy, highest-luminosity circular lepton collider exists today. The FCC-ee concept comprises a power-saving twin-aperture magnet system, a continuous top-up injection scheme for stable operation and maximum integrated luminosity. Combined with an energy staging scheme, the FCC-ee represents the most efficient and most sustainable route for executing the research required to discover signs of new physics beyond the Standard Model. The step-wise energy increase of the FCC-ee does not require any additional civil engineering activities. Strategic R&D for FCC-ee aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate residual technology-related risks and ensure that industry can benefit from an acceptable economic utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, building the international machine and experiment consortia, developing a territorial implementation plan in agreement with the host-states’ requirements, optimising the disposal of land and underground volumes and preparing the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase. In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCCee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics. info:eu-repo/grantAgreement/EC/FP7/312453 info:eu-repo/semantics/ Education Level info:eu-repo/semantics/article http://cds.cern.ch/record/2651299 Eur. Phys. J. Spec. Top. Eur. Phys. J. Spec. Top., 2 (2019) pp. 261-623 2018-12-18 |
spellingShingle | Accelerators and Storage Rings Benedikt, Michael Blondel, Alain Brunner, Olivier Capeans Garrido, Mar Cerutti, Francesco Gutleber, Johannes Janot, Patrick Jimenez, Jose Miguel Mertens, Volker Milanese, Attilio Oide, Katsunobu Osborne, John Andrew Otto, Thomas Papaphilippou, Yannis Poole, John Tavian, Laurent Jean Zimmermann, Frank FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 |
title | FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 |
title_full | FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 |
title_fullStr | FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 |
title_full_unstemmed | FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 |
title_short | FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2 |
title_sort | fcc-ee: the lepton collider: future circular collider conceptual design report volume 2 |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1140/epjst/e2019-900045-4 http://cds.cern.ch/record/2651299 http://cds.cern.ch/record/2651299 |
work_keys_str_mv | AT benediktmichael fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT blondelalain fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT brunnerolivier fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT capeansgarridomar fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT ceruttifrancesco fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT gutleberjohannes fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT janotpatrick fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT jimenezjosemiguel fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT mertensvolker fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT milaneseattilio fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT oidekatsunobu fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT osbornejohnandrew fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT ottothomas fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT papaphilippouyannis fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT poolejohn fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT tavianlaurentjean fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 AT zimmermannfrank fcceetheleptoncolliderfuturecircularcolliderconceptualdesignreportvolume2 |