Cargando…
Image-based model parameter optimisation using Model-Assisted Generative Adversarial Networks
We propose and demonstrate the use of a model-assisted generative adversarial network (GAN) to produce fake images that accurately match true images through the variation of the parameters of the model that describes the features of the images. The generator learns the model parameter values that pr...
Autores principales: | Alonso-Monsalve, Saúl, Whitehead, Leigh H. |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TNNLS.2020.2969327 http://cds.cern.ch/record/2652277 |
Ejemplares similares
-
Product Jacobi-Theta Boltzmann machines with score matching
por: Pasquale, Andrea, et al.
Publicado: (2023) -
End-to-end Sinkhorn Autoencoder with Noise Generator
por: Deja, Kamil, et al.
Publicado: (2020) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
QONNX: Representing Arbitrary-Precision Quantized Neural Networks
por: Pappalardo, Alessandro, et al.
Publicado: (2022)