Cargando…
Machine learning classification: case of Higgs boson CP state in H to tau tau$ decay at LHC
Machine learning (ML) techniques are rapidly finding a place among the methods of high-energy physics data analysis. Different approaches are explored concerning how much effort should be put into building high-level variables based on physics insight into the problem, and when it is enough to rely...
Autores principales: | Lasocha, K., Richter-Was, E., Tracz, D., Was, Z., Winkowska, P. |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.100.113001 http://cds.cern.ch/record/2653082 |
Ejemplares similares
-
Deep Neural Network application: Higgs boson CP state mixing angle in $H \to \tau \tau$ decay and at LHC
por: Lasocha, K., et al.
Publicado: (2020) -
Deep learning approach to the Higgs boson CP measurement in H to tau tau decay and associated systematics
por: Barberio, Elisabetta, et al.
Publicado: (2017) -
Using Tau Polarization for Charged Higgs Boson and SUSY Searches at LHC
por: Guchait, Monoranjan, et al.
Publicado: (2008) -
Optimizing Higgs Boson CP Measurement in $H\to \tau \tau $ decay with ML Techniques
por: Barberio, Elisabetta, et al.
Publicado: (2017) -
Withdrawn: Tau polarization as CP diagnostic for a light Higgs boson at a photon collider
por: Godbole, Rohini M., et al.
Publicado: (2005)