Cargando…
Machine Learning techniques to search for New Physics
The purpose of this project consisted in formulating the classic hypothesis-statistical construction as the training of a neural network with a customized loss function. Doing so, one could generalize searches for physics beyond the standard model (e.g., those at the LHC), replacing model-dependende...
Autor principal: | Grosso, Gaia |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2653342 |
Ejemplares similares
Cargando…
Learning New Physics from a Machine
por: D'Agnolo, Raffaele Tito, et al.
Publicado: (2018)
por: D'Agnolo, Raffaele Tito, et al.
Publicado: (2018)
Ejemplares similares
-
Searching for Unexpected New Physics at the LHC with Machine Learning
por: Grosso, Gaia
Publicado: (2023) -
Learning new physics from an imperfect machine
por: D’Agnolo, Raffaele Tito, et al.
Publicado: (2022) -
Learning New Physics from an Imperfect Machine
por: d'Agnolo, Raffaele Tito, et al.
Publicado: (2021) -
Prediction of RPC efficiency using machine learning techniques
por: Abbasgholinejadkhamirgir, Erfan
Publicado: (2021) -
Machine Learning techniques to approximate Matrix Element Method calculations
por: Bamber, James
Publicado: (2018)